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ABSTRACT

A boundary integral formulation for the analysis of
circular plate bending under lateral loads is developed using
Green's functions. The formulation specifically applies to
annular plates with arbitrary boundary conditions. The plate
bending solution in the plastic range is determined using a
numerical method of incremental loading. A computer program to
perform the required calculations was developed and is
presented. Results for three case studies are included and
compared with results obtained by other methods. Plate
behavior in the elastic range is in excellent agreement with
other analytical solutions, and in the plastic range is in
reasonable agreement with published results obtained using a
finite element method.
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NOMENCLATURE

a - plate outer radius

b - plate inner radius

c plate outer radius for Green's function

D flexural rigidity

d plate inner radius for Green's function

E Young's modulus

h plate thickness

I - area moment of inertia of beam cross section

Kr - radial curvature

KS - tangential curvature

L - beam length

M,MG - elastic moments for beam bending problem

Mr,MGr - elastic radial mcments per unit length

MrP - plastic radial moment per unit length

Mr actual radial moment per unit length

M8,MG 8  - elastic tangential moments per unit length

MaP plastic tangential moment per unit length

Q,QG - shears for beam bending problem

Qr,QGr - elastic radial shears per unit length

dr - actual radial shear per unit length

q,qG - distributed loads per unit area
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Rr radial radius of curvature

Re - tangential radius of curvature

r radial distance from plate center

ro  radial position of ring load

Sy yield stress

w,wG deflections

- distance along beam

z - lateral distance from plate center

-Ep plastic strain increment

Er  total radial strain

ere elastic radial strain

'IrP plastic radial strain

E9 total tangential strain

,,e elastic tangential strain

E-P plastic tangential strain

Y yield strain

#.+G slopes

F plate boundary

e -- angular position in tangential direction

- biharmonic operator

AAG - loads per unit length for beam bending problem

PG magnitude of Green's function ring load

ge equivalent stress

rr  radial stress

78 tangential stress

u Poisson's ratio

plate domain
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CHAPTER 1

INTRODUCTION

The solution of plate bending problems in the plastic

range has been approached using finite element, and more

recently, boundary integral methods (also called boundary

element methods). Unlike the finite element method, which

discretizes the inside of the plate into a number of small

elements, the boundary integral method discretizes only the

plate boundary, thereby reducing the order of the problem by

one.

Many different approaches have been used to formulate

plate bending problems using boundary integrals, with perhaps

the most attractive proposed by Stern
<
l> and Bezine

< 2
>. These

authors, working independently, developed a direct boundary

integal method using Green's functions to solve the general

plate bending problem in the elastic range. This work has been

extended by Moshaiov and Vorus
< 3

> to include plastic behavior.

Symmetry is commonly used to reduce the size of the system

12



of equations needed to analyze a symmetric structure. In the

case of axisymmetrically loaded circular plates the problem

becomes one-dimensional. For the linear elastic case, it has a

closed form analytic solution. However, some authors have

instead treated this circular plate problem as a two-

dimensional problem, perhaps for the sake of demonstration

(Kamiya and Sawki< 4>). They have used symmetry to allow

discretization of a portion of the boundary instead of the

entire boundary.

This thesis develops a general formulation for solving

annular plate bending problems using boundary integrals that

reduces the problem to essentially a one-dimensional problem by

the use of a "ring" type Green's function, Such a formulation

is most useful, inspite of the closed form solution, as it

allows the analysis of plates with different boundary

conditions and loads with one algorithm. Moreover, it permits

a solution in the plastic range, which is not possible with a

conventional analytic approach. In addition, the simplicity of

the one-dimensional formulation given here has a unique

significance for the teaching of boundary element methods.

Butterfield<5> has developed a boundary element

formulation for the one-dimensional elastic beam bending

problem. Here, a similar approach is taken for the annular

plate. It is also extended to include non-linear behavior

using an incremental load method as outlined by Moshaiov and

13
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Vorus. Numerical results for three different annular plate

configurations are presented and compared to results obtained

using other methods. A discussion of these results follows, as

well as suggestions for future work in this area.

14



CHAPTER 2

DEVELOPMENT OF THE GOVERNING DIFFERENTIAL EQUATION

This chapter reviews the derivation of the governing

differential equation for a circular plate subjected to a

symmetrically distributed lateral load. The derivation is

based on that provided by Timoshenko<6 >, using Kirchoff's

assumptions. It is, therefore, applicable only to the linear-

elastic case. Treatment of non-linear behavior is addressed in

Chapter 5.

2.1 Moment-Curvature Relationships

The first step in developing the governing differential

equation for a circular plate is to find a relationship between

moment and curvature. Curvature in the radial direction (Kr)

and the tangential direction (K9 ) for a symmetrically loaded

circular plate is found using geometrical considerations. Kr,

which is the inverse of the radius of curvature in the radial

direction (Hr), can vary as a function of the distance (r) from

the plate center. Examining the plate of Figure 2-1 at a small

15



radial distance dr away from r, the slope (f) can be expressed

in terms of the radial distance r and the deflection (w) as

follows

dw
$ - - (2-1-1)

dr

The radial radius of curvature is

dr
R -r d

giving an expression for the radial curvature in terms of w

1 df d
2
w

K - - - (2-1-2)
r R dr dr

r

16
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Figure 2-1. Deflection, slope, and curvature relatio , ::'a
in circular plate bending

Due to symmetry, the tangential radius of curvature is

constant at any given radius r, and for small deflections can

be expressed as

r
R -

giving an expression for the tangential curvature

17



1 4 1 dw

S R 9 r r dr

To relate moment to curvature, consider the small plate

element illustrated in Figure 2-2. Define Mr and Me, the

radial and tangential momenta per unit length respectively, as

fol lows:

h/2

M = J a z dz

(2-1-3)

h /2

-h/2 Zd

where h is the plate thickness. Assuming the plate is thin and

hence experiences a two-dimensional stress state, Hooke's law

yields the following expressions relating stresses to strains

a - (e V E r e

(2-1-4)

where E is Young's modulus, v is Poisson's ratio, and rean

ceare the elastic radial and tangential strains, respec-

tively. in Chapter 5, which discusses non-linear behavior, a

distinction will he made between the elastic strain and the

total strain. In the plastic range, the total strain includes

elastic and plastic components, in accordance with the

following expressions:

18



E C e + IE
r r r

8= C9e + 8

where the superscript p refers to the plastic strain~

components. Since Chapter 2 treats only elastic behavior, the

total strain is simply equal to the elastic strain.

Mr 

M

--------------------

r d Z -----------

- dr

Figure 2-2. Di~fferentia, circular plate element.

Substituting Eq. (2-1-4) into Eq. (2-1-3) gives

19



h/2

M (l= E ) I z dz

-h/2

8 (i-u j I8 + v r ]z dz
-h/2

Finally, from geometrical considerations, strain and curvature

are related by

dw
c K z
r r dr

(2-1-6)

1 dw
SK z -

r dr

which, when substituted into Eq. (2-1-5), give the desired

moment-curvature relationship for a circular plate

d w v dw

M r - + -+r dr 2 r dr

(2-1-7)

+I dw d'w

me D -D + v
r dr dr ]

where D, the flexural rigidity, is given by

E h
D - (2-1-8)

12 (1-v2)

20



2.2 Equilibrium Equations

For the moment-curvature relationships to be useful, an

equilibrium equations in terms of moments and shears must be

found. The governing differential equation is then developed

by substituting the expressions relating moment to curvature

into the equilibrium equation.

To find an equilibrium equation, consider first the

laterally loaded circular plate element illustrated in Figure

2-3, where Qr is the radial shearing force per unit length and

q is the distributed load (force per unit area). The couples

acting along edges ab and cd due to radial bending moments are

ab: Mr r dS

cd: Mr + dr dr r I dr d1

The shear forces acting along the edges are

ab: Q r d8

dO
cd: Q + r dr r , dr dS

21



rfr

rM

igur'e 2-3. Shear forces and Moulents act ing on di, I
plate element.

Because of symmetry, there are no shear forces acting

along edges ad and bc, leaving only the tangential bending

moments

ad:

bc: } Me dr

These couples can be resolved into components acting

perpendicular to the axis ro (which are equal and opposite and

thus cancel), and components acting along the ro axis which

have a total magnitude of

22



Ma dr de

Summing up all the couples and neglecting the small change in

shear force across the element (i.e. dropping the dQ terms)

gives the following equilibrium equation

dM
Mr + -r dr r + dr d - Mr r dodrr

- Me dr do 0 r r do dr 0r

This equation is further simplified by ignoring higher order

terms to give

dM r
Mr + dr - me + Qr r 0 (2-2 -1

Also, from equilibrium in the z direction

dO
- r q (2-2-2)

dr

2.3 Differential Equation for Circular Plate Bending

Having found the desired equilibrium equations, the moment

curvature relationships of Section 2.1 are now used to develop

the governing differential equation for the circular plate

bending problem. Specifically, substituting Eq. (2-l-7! into

Eq. (2-2-1) results in a third order differential equation to

describe the response of a circular plate to lateral loading

23



d
3
w I d

2
w 1 dw r

-+ - (2-3- 1
dr r dr 2 r dr D

which can be rewritten to provide an expression for shear

Sd w W I d w W I dw

Q -- 2d (2-3-2)r dr' r dr r dr

Differentiating Eq. (2-3-1) with respect to r and using Eq. (2-

2-2) results in a fourth order differential equation in terms

of r, w, D, and q

d
4
w 2 d

3
w I d

2
w 1 dw q

+ - + - (2-3-3)a 32 2

dr r dr r dr r dr D

which can be expressed in a more concise form using the

biharmonic operator as

q
V w 2-3-4)

D

where

d 2 1 d 1 d
+ - -- 2 3-5)

dr r dr r dr r (r

24



CHAPTER 3

A BOUNDARY INTEGRAL METHOD

This chapter describes a boundary integral method, and

how it can be used to provid, a general method of soluticn of

circular plate bending problems. A one-dimensional beam

bending problem is used to illustrate this method.

3.1 General Formulation

Solution of Eq. (2-3-3) analytically as a boundary value

problem by applying known boundary conditions is possible

Timoshenko). However, this approa.h requires special

attention for each plate configuration and load distribution.

This diffictulty is compounded when considering problems

involving plastic behavior which should be solved numerically

due to the non-linear behavior in the plastic range.

Therefore, a general method is sought wherein the same

procedure can be used to solve a variety of problems, thus

lending the problems to computer solution techniques. One such

method, adopted for this work to examine circular plate

25



bending, is the boundary integral method.

Stern and Bezine, working independently, obtained a

general formulation for plate bending problems in terms of

boundary integrals. These integrals involve displacements,

slopes, bending moments, and shears on the plate boundary.

Both authors used the following reciprocal identity, which can

be derived using Green's identity:

D w G WG dQ

j I QG w + MG4 - G M  - WG Q J dr (3-1-1)

where

2 - plate domain

r - plate boundary

D - flexural rigidity

- biharmonic operator

w,wG - deflections

+,#(G - slopes

M,MG - bending moments per unit length

QQG - shear forces per unit length

To arrive at the boundary integral equation, wG is selected as

a Green's function.

26



3.2 Beam Bending Problem

Butterfield has presented a reduced form of Eq. (3-1-1)

for the one-dimensional case of beam bending, which is

developed in the discussion that follows. As a first step,

Butterfield multiplies both sides of the governing differential

equation for a beam by a second function and integrates over

the beam's length, giving

0l V w wG dx 10 h W iG dx (3-2-1)

where h is the distributed load per unit length, I is the area

moment of inertia of the beam cross section, and the operator

7' is defined for the beam case as

4
4 - d

dx.

Integrating the left hand side of Eq. (3-2-1) by parts

several times, Butterfield develops the equation

00

Recognizing that for the second function

4

the preceding equation can be rewritten as

27



0

[ -WG Q + #G M - MG 4 + QG w] (3-2-2)

t0

To gain some physical insight into Eq. (3-2-2) it is

useful to recall Betti's reciprocal work theorem. This theorem

states that for an elastic structure subjected to two

independent causes (e.g. loads), the total work done by the

first cause in moving through the displacements resulting from

the second cause is equal to the total work done by the second

cause in moving through the displacements produced by the first

cause< 7 >. The theorem, as it applies to our beam bending

problem, can be better understood by examining the examples of

Figure 3-i.

28



Pi PjiS.P Ij PJ

JM

mi JJ Oij Mi

Figure 3-1. Examples of Betti's reciprocal work th-o

In Figure 3-la, the product of load Pi and displacement

6ij is equal to the product of load Pi and displacement 6ji.

Similarly, in Figure 3-1b, the product of moment M i and slope

fij is equal to the product of moment NM and slope +ji.

This concept can be applied to understand Eq. (3-2-2),

with the i cause the actual loading or applied moment condition

for the system of interest and the j cause the loading or

applied moment condition of the second function. In this

equation, the A term represents the external load in the system

of interest, which when multiplied by the deflection wG

described by the second function, gives a reciprocal work term.

Similarly, the #G term is a slope for the second function,

which when multiplied by the moment M for the system of

29



interest yields another work term. This concept applies to all

the terms of the equation, which are combined according to

Betti's theorm of' reciprocal work to yield the given equality.

For Eq. (3-2-2) to be useful for solving the beam bending

problem, Butterfield chooses as the second function a Green's

function which is based on a singular loading condition; that

is to say, a point load. If the point load of unit magnitude

is applied at either x=O or x=L, the second intergral term on

the left hand side of Eq. (3-2-2) takes on the value of the

boundary condition of the beam of interest. Usually, some

attention should be given to cases where the integrals become

s ingula r.

This yields two equations. However, in general, beam

bending problems involve four unknown boundary condilions. For

example, if simple supports are specified on both ends, the

momenta and deflections at the two ends are known to be zero,

while the shears and slopes are not known. Therefore, two

additional equations are required.

To obtain two more equations, derivatives of the first two

equations are taken. This gives an additional Green's

function. Boundary conditions can now be obtained by solving

the four equations simultaneously. Knowing the boundary

conditions, the beam problem can be solved for interior points

using Eq. (3-2-2) and appropriate derivatives with the point

30



load positioned at the location of interest.

The formulation for the beam bending problem outlined

above is a direct approach based on Green's identity.

Butterfield also develops a boundary integral equation using

the more intuitive indirect method. For the circular plate

formulation that follows in Chapter 4, only the direct method

is used.

31



CHAPTER 4

DEVELOPMENT OF THE FORMULATION FOR CIRCULAR PLATES

This chapter presents a general method for solving

circular plate bending problems in the elastic range using

boundary integrals. The resulting integral equations are

analagous to those developed by Butterfield for the one-

dimensional beam problem, which are discussed in Chapter 3.

Treatment of non-linear behavior is discussed in Chapter 5.

4.1 Description of Plate Geometry

Figure 4-1I depicts a symmetrically loaded annular plate,

and includes notation that will be referred to throughout the

development of the integral equation and the discussion of the

selected Green's functions.

Important symbols are defined as follows:

32



W,WG deflections

#,#G - slopes

Mr,MGr - radial bending moments per unit lei :h

MMG9- tangential bending moments per unit length

Qr,-Gr radial shear forces per unit length

QqQGq - tangential shear forces per unit length

a plate outer radius

b - plate inner radius

h - plate thickness

r - radius of interest

q - distributed load per unit area

I I I

S / 33
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4.2 Development of Intelgral Equation

Though the laterally loaded circular plate bending problem

is two-dimensional, symmetry reduces the problem to essentially

a one-dimensional type problem. Therefore, it is expected that

the integral equation developed by Butterfield for the beam

case can be adapted to the case of the circular plate. This

equation (Eq. (3-2-2)) is repeated below:

I' ?LW - w hG dx

~wG Q # G M - M G # Q GwJ

To obtain some indication of what the circular plate

integral equation will look like, a non-rigorous method is

first used to adapt Eq. (3-2-2) to the circular plate case,

followed by a more rigorous mathematical development.

In the non-rigorous approach, a first step is to replace

the integral on the left hand side with an area integral and

the line load per unit length A with the load per unit area q.

Next, adjustments are made to reciprocal work terms on the

boundaries (right hand side of Eq. (3-2-2Y . Specifically, the

shear terms are replaced with the product of the radial shear

per unit length and the total length (2tNr), observing that for

symmetrical loading, the tangential shear %g is 0. Moment

terms are replaced with radial moments, since there are no

tangential moments on the boundaries. These moments must also

34



be multiplied by the length (2rr) to give total moment. The

resulting expression is

aa

,2r a~ q wG- w q, ) r dr dO
2wr -WG Qr + G Mr - MGr * + Q Gr w (4-2-1)

b

which reduces to

Ja I q w G - w q)C r dr
b

r I wG r + G Mr - MGr QGr w  (4-2-2)

So far, it has only been asserted that the integral

equation for the circular plate case should have a form similar

to Eq. (4-2-2). To obtain the exact integral equation, a

direct method is used.

As a starting point for the direct method, consider the

following expression:

a d wG dw
U . b .. r dr

b dr ' dry

This expression can be written slightly differently as V

35



v fdwdwG rd

d r dr

Integrating both expressions by parts yields

dwG d 2 w a wa 2 dw d~w
r -2 r + - r dr

dr dr b b dr r dr dr

and

dw d wG a a d ( dwG d 3W
Vr I - - - - + -G r dr

dr dr' b bd r dr 2  Ir

Recalling Eq. (2-3-2), it is possible to rewrite these

expressions in terms of shear Qr

dwG d'w 
a

U =- - r
dr dr 2  b

dw 1 dw G d w

r dr - dr

J dr D b r dr dr

and

dw d2 W a

V - - r -

dr dr b

dw Gr a I dw dw G

S- r r dr dr

b dr D b r Ir dr

Setting U equal to V and canceling some terms gives

36



dwG d'w a dw G Q
- - r - r dr
dr dr b b dr D

2 d a a dw QGr

- - r - - - r dr
dr dr b b dr D

The two integral terms above are integrated by parts, with

the operator of Eq. (2-3-5) used to simplify the expressions

dw GQr a a- r dr w r r V w w G r dr

b dr DD b

a r r dr w r - V4 wG w r drdw OGr a a

b dr D D b b

which, when substituted into the previous equation, yield

dw G d w ar V4w W
_ r - wG r - G r dr

dr dr b D b b

dw d WG r Q Gr a
- -r w r - V WG W r dr

drdr b D b b

After some simplification, this expression becomes

S V w r wG - V wG r w ) dr
b

r QGr dw d wG  dw G d'w
r wG - - w - + - G

D D dr dr dr dr 2

37
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The last equation bears a close resemblance to Eq. (4-2-

2!, except for sign differences and the fact that terms

involving the second derivative of deflection have yet to be

replaced by terms involving moment. To accomplish the latter,

the following expression is added to the third term of the

right hand side of the preceding expression, and subtracted

from the fourth term

v dw dwG

r dr dr

Through Eq. (2-1-7) this gives

V w r wG - V G r w dr

b

-- r 4 w + MG a 4-2- 23

D w r - w QG r MG r

which can be rewritten using Eq. 2-3-4; as

,a

b

r wG (r w 0 Gr + M Gr - G Mr ) 4 -2

b

Remarkably, with the exception of a sign difference that is

attributable to the difference in sign convention, this

expression is identical to Eq. (4-2-2), which was asserted

based on the integral equation developed by Butterfield.
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4.3 Selection of a Green's Function

As is the case for the beam described in Chapter 3, Eq.

4-2-4) is useful only if w G is chosen as a Green's function

with certain properties. As will become evident later in this

chapter, the Green's function must describe a ring loaded plate

to solve circular plate bending problems, just as a Green's

function describing a point loaded beam was used to solve the

beam bending problem.

To solve the beam problem, Butterfield choses -i Green's

function describing an infinitely long beam with i point load.

It is not essential that a Green's function for an infinite

beam be used. In fact, as one would expect from Betti's

reciprocal work theorem, a Green's function describing a finite

geometry will work as well, provided the function also

des-ribes the response to a point load.

Applying Butterfield's method to the circular plate case,

a Green's function representing the ring loaded plate shown in

Figure 4-2 is adopted. Fhe Green's function and associated

derivatives are included in Appendix A. It should be noted

that the outer and inner radii of the Green's function (c and

d need not coincid.- with the outer and inner radii of' the

actual plate (a and b:



r q

-I- C1

fU c t i c

That a simple support is chosen for the outer plate radius is

not important; a plate clamped at both the inner and outer

radii would also have been suitable. What is important is that

the loading condition for the Green's function case be a ring

load. To simplify calculations, a ring load of magnitude 1 is

used.

4.4 Solution of Interal Equation

Having selected a Green's function, the next step is to

obtain a form of Eq. (4-2-4) suitable to solve the actual plate

bending problem. Rearranging terms, Eq. (4-2-4) can be

rewritten as
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qG w r dr [r [w Q r - MGr r

b b

+ q wG r dr (4-4-1)

b

The ring load may be expressed in terms of the dirac delta

function 8(r,r o )

4
D VWG q G = 6(rro)

Substituting this expression into Eq. (4-4-1) and making use of

the following property of a dirac delta function

6(r,r) w r dr r w(r~r )0 0

gives

r ow(rrr) r [ wG Qr + G Mr - MGr Q Gr
b

+ a q wG r dr (4-4-2)
Jb

By choosing ro at radius a, and then at radius b, the

deflection w in the left hand side of Eq. 4-4-2) is the

deflection at the boundary, which is either a known or unknown

boundary condition. Hence, two equations are available to

solve for the four unknown boundary conditions.
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To obtain two more equations, Eq. (4-4-2) is

differentiated with respect to ro . This yields the second

Green's function, which is evaluated with ro at a and then

again at b. The second Green's function corresponds to the

slope of the plate, which at r=a and r=b is again either a

known or an unknown boundary condition. There is thus now a

complete set of four equations to solve for the four unknown

boundary conditions.

Eq. (4-4-2) can be rewritten as

w(r=r ) I - -G Q + #G M - N + Q Gr w ,
w o -- -G Qr Gr O~r Gr b

r0

+ - q w r dr (4-4-3)
r wG r
0b
r 'b

Differentiating this expression with respect to ro gives

dw(r=r)0 r fdwG + d4G d Mr dQ G
ow00 Or Gr

-M w
dr r 

0
r dr r dr dr

0r ro 0r 0 0 0 b

1 a dwG  w~rr )

+ - q - r dr o (4-4-4)
r b dr r

Eqs. (4-4-3) and (4-4-4), evaluated both for ro=a and ro=b,

give rise to a system of four equations that when solved

simultaneously, yield the four unknown boundary conditions. In

matrix form, these equations can be written as
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aw(a) -wG(a,a) G (aa) -MGr (a,a) Q Gr(a,a) Qr(a)

bw(b) -wG(a,b) #G(a,b) -MGr(a,b) QGr(a,b) Mr (a)

-a4(a) -w'(aa) #(a, a) -M'r(aa) Q(aa) #(a)G G( -Gr , Gr

-b ( ) '(.,b) ,b a ba b ) , (a,b) w(a)

-WG(b,a) G(b,a) -MGr(b,a) QGr(b,a) Q r(b)

-b wG(b,bG (b,b -MGr(b,bQ Gr (b,
b ) Mr(b)

-w( #1(ba) (ba) Q1 (ba) #(b)
G -Gr ' Gr

-WG(b,b) #'(b,b) - ' (b,b) 'or(b,b) w(b)

G O Mr Or

J q w G(ra) r dr

a

Oi q wG(rb) r dr+ ~(4-4-5)
a

q wG(r,a) r dr - w(a)

Ia
q w (rb) r dr - w(b)

where

and

0

Using Gauss elimination, the preceding system of equations is

solved for the four unknown boundary conditions.

The final step is to calculate deflection, slope, moment

and shear across the plate. Deflection and slope are found
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using Eqs. (4-4-3) and (4-4-4) by substituting in the

calculated boundary conditions and evaluating the expressions

at the value of ro of interest. Moment and shear are

determined using Eqs. (2-1-7) and (2-3-2), which require

calculation of the second and third derivatives or w with

respect to ro . Differentiating Eq. (4-4-4) results in the

desired expressions

2 t 2 2 22
dr r dw dr4 d M dr

S ----- Q + ---- w

dr[r dr
2  

dr dr d
b

I a  d w 2 dw(r=r )
+ - q r dr - o (4-4-6)

r b dr r dr

and

dw(r~r r d3wG d G d MG  d3QGo - -- + -- M Gr Or-
3 Qr 3 r 3 3

dr r dr dr dr' dr
0 0 0 r 0 0 0 *b

1 a d
3

WG 3 d'w(rr)

,- q d r dr - o (4-4-7)
r dr r d'r

making a complete solution for the circular plate bending

problem in the elastic range possible.
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CHAPTER 5

NON-LINEAR BEHAVIOR

This chapter develops a boundary integral formulation for

circular plate bending problems that includes non-linear

material behavior. Specifically, the boundary integral

equation developed in Chapter 4 for the elastic plate is

modified to include plastic moment terms to account for the

plastic behavior. An incremental load method similar to that

used by Moshaiov and Vorus can then be applied to arrive at a

solution to the plate bending problem once yielding has begun.

5A Plastic Stress-Strain Relationships

When considering plasticity, strain can be thought of as

having two components: an elastic component and a plastic

component. In cylindrical coordinates, which is applicable to

the two-dimensional circular plate case, the total strain c can

be expressed in terms of these two components as

45



e p

r r r
(5-1-1)

e p

where the superscripts e and p refer to the elastic and plastic

strain components, respectively.

Eq. (2-1-4), which provides the relationship between

stress and strain for a linearly elastic material, can thus be

rewritten in terms of the total strain and plastic strain as

follows:

E1
ar ( 2 r - r '9 -

(5-1-2)

: K-v +aS re EPr 'rP

5.2 Plastic Moment-Curvature Relationships

To develop the moment-curvature relationships with

plasticity, Eq. (5-1-2) is substituted into Eq. (2-1-3) to give

h/ 2

M r (lI E r r

-h/2

46 - ESP z dz
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h/2 p +

-h/2

V E - z dz

These expressions can be rewritten as

h/2E
rMj) t + V E9  z dz -M

p

-h/2

(5-2-1)

h/2

M = (l-v ) ( ~ '~ r )zd
-h/2

where the radial and tangential plastic moments, MrP and M9 P,

are defined as

E h/2

r { Er P)

-h/2

(5-2-2)
h/2

MeP 2 ] C p + V C z dz

-h/2

Recalling the relationships for total strain of Eq. (2-1-6) and

performing the integration over the plate thickness yield the

moment-curvature relationship for a circula" plate with
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plasticity

dw v dw
M r  -D - + -
r dr 2  r dr r

(5-2-3)

S1 dw v d'w P

Me - D - + -

Ir dr r dr 2 I

5.3 Governing Differential Equation With Plasticity

Chapter 2 develops the governing differential equation for

a circular plate in the elastic range by substituting the

elastic moment-curvature relationships into the elastic

equilibrium equation. In this section, a similar approach is

used to develop the governing differential equation with

plasticity. The difference here is that the moment-curvature

relationships (Eq. (5-2-3)) include plastic terms.

Substituting Eq. (5-2-3) into the equilibrium equation for

a circular plate (Eq. (2-3-1)) gives

3 d 2  dw I dM p

+ + M _ rr MM2 r -rI

dr' r dr r dr r D dr

_r (5-3-1)

D

where the tilda is used to distinguish the fact that the shear

includes plastic effects. Differentiating this expression once

with respect to r gives the fourth order governing differential
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equation for the plate with plasticity

4 3 2
d W 2 dw 1 dw 1 dw

4 3 2 2 3
dr r dr r dr r dr

q 1 2 d M r  d r
2 
M - d M p

D D r dr dr 2  r dr

which can be rewritten using the operator defined in Eq. 2-3-

5) as

q 1 1 2 dM p  d 2 M p  I dMep
Vw -_ r + r -(5-3-2)

D D r dr dr r dr

This equation is identical to the equilibrium equation for the

elastic case with the exception of the terms that include

derivatives of the plastic moments. Note that these terms may

be thought of as additional pseudo loads that must be combined

with the actual load to account for the plastic behavior.

5.4 Boundary Itegal Formulation With Plasticity

In the preceding chapter, the governing differential

equation is used to develop a boundary integral formulation for

a circular plate in the elastic case. This section presents a

similar approach to develop a boundary integral formulation

for the plastic case.

As a starting point, Eqs. (2-3-4) and (5-3-2) are

substituted into Eq. (4-2-3) to give
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Ja q w r dr [ r (-w G r Mr - MGr #Gr a

b b

(5-4-1)

+ a dr a / 2 dM 
p  d2 M p 1 dM 

p

q Id r ± -r dr_ wG r dr

b r dr dr r dr

This equation is not yet in a form that is usable for

solving the circular plate bending problem. In the first

place, there are several terms that include derivatives of the

radial or tangential plastic moments, which are not generally

known across the plate. Secondly, the shear and moment terms

Qr and Mr evaluated at the boundaries are not the actual shears

and moments, since they were developed based on elastic

considerations only.

To resolve these concerns, the integral term involving

plastic moments in Eq. (5-4-1) is integrated by parts as

follows:
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dM p  d 2 Mr dMrr+ dr

GwG 2 + r- -

dr dr dr

b

dM p
r dr

bb

, a 

ddr 
rd 

r2M 

r p

2 - + r - - --

w . r rd r- 
d r

la p

r d r d 6P dr

w G r p+ r --- er
dr dr dr

b

dMr - dw-

P + r- - NIp -r I

r dr 6 dr

a d2

dw G  wG4- NI + r-- NIM dr

dr dr I

Using the above relationship and choosing a Green's function

that describes a ring loaded plate as is done for Eq. (4-4-2),

Eq. (5-4-1) becomes

51



r 0w(rr,) r [w G Q r+4G I r M G r + QGwJ a

b

a ar

dr - p Md d~WGrN d

Wb dr dr rb b

Recall that 0 r and Mr represent shear and moment for the

elastic case. However, they are not the actual shear and

moment for the plastic case. With plasticity, the actual

shears and moments are combinations of elastic and plastic

terms. From Eq. (5-3-1), the shear relationship with

plasticity is

I dM p

r Q - M p + r r _ MaOr Qr r dr

r dr

and from Eq. (5-2-3), the moment relationship with plasticity

is

M + M 
p

r r r

where, as with the case for shear, the tilda is used to

distinguish the fact that the moment term i.ncludes plastic

effects. When substituted into the preceding expression, these

expressions give the desired boundary integral formulation for

he circular plate bending problem
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a

w krr 0 -- -Wr G d r - MGr j Gr

-- q w G  r dr
r b

b

it[ dwG d2WG
- a - M p dr C r M j dr '5-4-2)r dr dr 2

By evaluating Eq. (5-4-2) with the ring load positioned

both at rora and rorb, two equations are obtained to solve for

the unknown boundary conditions. Eq. '5-4-2) is differentiated

with respect to ro to obtain a second Green's function. This,

via Eq. (2-I-1), gives an expression for slope of the actual

plate. The second Green's function is evaluated with the ring

load positioned at ro=a and rosb, to provide the remaining two

equations.

Differentiating Eq. (5-4-2) with respect to ro  gives
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dw(rzr ) r I-dw Gd f dM GrdO r... Q - - - + - w
dr r dr r dr r dr dr0 o 0 0 0 b

1 a dwG w(r-r

+ - q - r dro

a __w
I d -G d d r (" wPdr M P + b- r Mr dr (5-4-3)

ro dr dr
0 0

b

In matrix form, the system of equations to be solved for

the four unknown boundary conditions for the non-linear case

can be written using the notation of Eq. (4-4-5) as follows:
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aw(a) -WG (a,a) 4G (a,a) -M Gr(a,a) Q Gr (a,a) r (a)

bw(b) a wG (a,b) 4G (a,b) -M Gr(a,b) 0 G (a,b) rI (a)

-a#(a) -w,'(a,a) #'(a,a) -M,(a,a) Q' (a,a) #(a)

GGi Gr

b ~G(b,b) # G(b,a) -MGr (b~b) Q Gr (b~) Q r(b)

-bb) # (b b) -NI (b b) Q (b,b) Rw(b)

w (b,a) #(b,a) -MI'r(b,a) Q (b,a) (b)

GGGr '' Gr

q w G(r,a) r dr

a

lbqJ G (r b) r di- (5-4-4)a

q wc(r,a) r dr - w(a,

J w'(r V) r dr - w(b)

F ~+ - r M d -

'b dr d r

: + >-<ii r M~ dr
a I dw (r~ald 2w G(r~)

d dw-ra dId- MP _ __dr 2 ir Mp di-

di- dr 2
0 0

~a. dwG (r,b) MPd 14GG(r,b)jrM d

I di- dz-2

b 0 0
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Observe that Eq. (5-4-4) is identical to Eq. (4-4-5)

except for the additional moment terms in the last matrix of

Eq. (5-4-4). These additional terms account for the plastic

behavior.

To find moments and shears across the plate, expressions

for the second and third derivatives of deflection with respect

to ro are required. These expressions follow:

aa

d(2 2 2 2d2w(r'ro) r wGo~ dl# d M~r d Q 0 w

dr lr drz2r dr d r dr dr,

I d'.WG 2 dw(r~r)

+ - q - r dr -dr r 0 dr

a

-w I 2 dwrz

G r M dr (5-4-5)

r20 dr dr

b 

0
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dr 
d 3 # d' d Gr

S3 r dr dr drdro r or 0 0

ra 32

1 dwG 3 d w(r=r o )

+ - q - r dr - 2

r dr r dr 0

a dw G  d wG

1 d - d -

1 dr ~m P - r M 'P dr (5-4-6)

0r dr dr'
0 0

b
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CHAPTER 6

NUMERICAL SOLUTION

This chapter describes the numerical procedure that was

used to solve the circular plate bending problem in both the

elastic and plastic ranges. The incremental load approach used

in the plastic range is first described. A brief description

of the computer program that was developed bi-sed on the

equations of Chapters 4 and 5 follows, including a discussion

of some aspects of numerical methods used in this program.

6.1 Incremental Load Method

Once plastic deformation starts to occur in the plate, the

linear relation between stress and strain is not valid. As

discussed by Mendelson< 8 >, strains in the plastic range are no

longer uniquely determined by the stresses, and in fact depend

on the loading history. Therefore, it is not possible to use

the relationships developed in Chapter 5 to directly arrive at

a plate bending solution given a loading condition outside the

elastic range. Rather, an incremental approach must be used

wherein the load is increased in small steps once yielding
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occurs at any point in the plate, and the complete stress state

for the plate is determined before load again is increased.

The incremental load method used for this analysis is

based on that adopted by Moshaiov and Vorus, and is frequently

seen in finite element solutions of structural analysis

problems. The principal steps of this method are outlined

below:

1. Using the plate parameters and loading conditions for

the bending problem at hand, an elastic solution is obtained

with the equations developed in Chapter 4.

2. The load at which the onset of yielding will occur in

the plate is calculated based on the stress state determined in

Step i. The selected yield criterion is the von Mises

criterion, which for the symmetrically loaded circular plate

case has the form:

ae r a ) 2

where ae is the equivalent, or effective, stress which

represents the von Mises yield surface. Yielding will occur

when ae equals or exceeds the uniaxial yield stress (Sy).

3. Unknown boundary conditions at yielding are

determined using Eq. (5-4-4), with plastic moments initially
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set equal to zero. Total strains at predetermined integration

points are calculated using Eqs. (2-1-6), (5-4-3) and (5-4-5).

From Eq. (2-1-4), the stress state at the integration points at

yielding is determined, and is stored to be later updated as

load is increased. Also stored for later updating are the

deflections, slopes, moments and shears across the plate.

4. The load which caused yield is then increased by a

small incremental amount. The increments of the total strains

resulting from this incremental load are calculated using Eq.

(2-1-6) in an incremental form, from which elastic strains can

be calculated by means of Eq. (5-1-1).

5. Using Eq. (2-1-4), the elastic stress increment

corresponding to the applied incremental load is calculated.

This incremental stress is added to the stress stored in Step 3

to give the total stress at the end of the load increment, A

check is made throughout the plate using the yield criterion of

Step 2 to determine where yielding has occurred.

6. In those plate regions where yielding has occurred,

the plastic strain increment (that is, the plastic strain due

to the incremental load) is calculated. Only materials that

exhibit elastic-perfectly plastic behavior as depicted in

Figure 6-1 have been examined. However, t~ie method can be used

with other material behavior, such as strain hardening. For

materials exhibiting elastic-perfectly plastic behavior, the
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plastic strain incre..ent 8 is the total incremental strain

determined from Eq. (2-1-6). This is shown in Figure 6-1.

7. The plastic moments are determined using Eq. (5-2-2).

8. Steps 3 through 6 are repeated, with the plastic

moments calculated in Step 7 used as an input to Eq. (5-4-4).

Step 7 is repeated and the plastic moments compared to the

moments calculated previously in Step 7. Iterations are

performed as necessary until these values converge, according

to a predetermined convergence criteria.

9. After convergence of plastic moments is achieved in

Step 8, stresses, plastic strains, deflections, slopes, moments

and shears throughout the plate are updated.

10. Another increment of load is applied, and Steps 3

through 9 above are repeated, using the plastic moment from the

previous load step as an initial estimate for plastic moment.
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6.2 Computer Program Description

Computer programs written in the Fortran 77 language have

been developed to solve the circular plate bending problem and

are included as Appendix B. Three programs, supported by nine

subroutines, are used.

The programs INPUT and LOAD create data files which are

used by the program MAIN to solve the bendiig problem. INPUT

and LOAD prompt the user for information describing the problem

to be solved, such as material properties, plate geometry,

boundary conditions and plate loading conditions. In addition,

certain adjustable parameters are input, which include step

62



sizes for the load increments, number of integration

increments, and the desired percentage for convergence of the

plastic moment increments. The program MAIN determines the

plate bending solution, both in the elastic and plastic ranges.

A flow diagram outlining the major elements and overall

logic path of this program is shown in Figure 6-2.
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Figure 6-?. computer program flow diagram.
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6.3 Numerical Methods

Eqs. (5-2-1), (5-4-4), (5-4-5) and (5-4-6) require

integrations to be performed across the plate. These

integrations are accomplished by a trapozoidal rule numerical

integration scheme. It was found that 10 increments across

both the plate radius and the plate half thickness gave

satisfactory results.

To ensure convergence of plastic moments, a root mean

square average of the the plastic moments at each station

across the plate is calculated and compared to the root mean

square average from the previous iteration. An agreement of

less than 0.2% was used for the analysis work for which results

appear in Chapter 7.



CHAPTER 7

RESULTS AND DISCUSSION

This chapter presents results of analyses performed on

three different plate configurations using the computer program

described in the preceding chapter. Results in the elastic

range for all three cases are compared with the analytic

solution from Roark< 9>, and for one case in the plastic: range

where published results using another solution method are

available. Descriptions of the case studies are given in

Sections 7.1 through 7.3. A discussion of the results is given

in Section 7.4.

7.1 Simply Supported Elasto-Plastic Annular Plate

The annular plate shown in Figure 7-1 is first examined,

The plate is simply supported at both the inner and outer

radii, and is subjected to a uniform lateral load. A material

exhibiting elastic-perfectly plastic behavior as depicted in

Figure 6-1 is used. The yield stress (Sy) is 16 ksi and the

Young's modulus is l0xl0 3 ksi. Material properties and plate

dimensions were selected to allow comparison with results
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obtained using a finite element method by Armen et al<1 0 >.

Plate deflection at yielding is shown in Figure 7-2, which

also includes results from the analytic solution given by Roark

for comparison. Plate deflections for the present solution at

several loads in the plastic range are shown in Figure 7-3, as

well as results obtained by Armen et al using a finite element

method of analysis.

Figure 7-4 shows the plastic zones in the plate at the

three load conditions depicted in Figure 7-3. Results obtained

by Armen et al are also included.
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7.2 Clamped Elasto-Plastic Annular Plate

The annular plate shown in Figure 7-5 is next examined.

The plate is clamped at both the inner and outer radii, and is

again subjected to a uniform lateral load. A material

exhibiting the same properties as described in Section 7.1 is

used. For the clamped annular plate case, results obtained

using other methods could not be found for the plastic range.

Consequently, material properties and plate dimensions were

selected to allow a qualitative comparison with results for the

simply supported plate of Section 7.1

Plate deflections at the onset of yielding are shown in

Figure 7-6, and at several loads in the plastic range in Figure
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7-7. The deflection at yielding using the analytic solution

given by Roark is shown in Figure 7-6 for comparison. Finally,

Figure 7-8 shows the plastic zones in the plate at the three

load conditions depicted in Figure 7-7.
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7.3 SimpySupported/Guided Elasto-Plastic Annular Plate

The third annular plate to be examined is shown in Figure

7-8. The plate is simply supported at the outer radius, with

the inner radius guided. The plate is again subject to a

uniform lateral load. A material exhibiting the same

properties described in Section 7-1 is assumed.

For this case, results obtained using other methods could

again not be found for the plastic range. However, a solution

for a continuous simply supported circular plate has been

obtained by Moshaiov and Vorus, and offers a qualitative

comparison with the results for the simply supported/guided
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annular plate.

Plate deflection at the onset of yielding is shown in

Figure 7-10 and at several loads in the plastic range in Figure

7-11 for the present analysis method. The deflection at

yielding obtained using the analytic solution from Roark is

shown in Figure 7-10 for comparison. Figure 7-12 shows the

plastic zones in the plate at the three load conditions

depicted in Figure 7-11 for the present solution. Corres-

ponding results from Moshaiov and Vorus for the continuous

.Jate of Figure 7-13 are shown in Figures 7-14 and 7-15.
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7.4 Discussion of Results

The results presented in Sections 7.1 through 7.3 for the

elastic range are uniformly in excellent agreement witL the

results using the analytic solutions given by Roark. This is

as should be expected, since the elastic range solution using

the present method is based on a closed form analytic solution.

Results in the plastic range, while reasonable, are not in

as close agreement with other published results. The only case

where data for a direct comparison could be found is the

configuration discussed in Section 7.1. From Figure 7-3, the

deflections at loads of 652 psi and 852 psi for the present

solution are in excellent agreement with the finite element

results of Armen et a!.

Results for the annular plate of Section 7.1 at the 1052

psi load are not as encouraging. Deflections and the extent of

the plastic zone are greater for the solution obtained by Armen

than for the present solution. To explain this difference, the

size of the integration and load increments has been varied,

but it shows little effect on the results. The reason behind

this difference is not known. However, it is believed that it

might he due to a programming error either .'n this report or in

the reference. Also, differences could arise by not taking

into account additional integration terms arising from the

singularity at rr, as discussed in Appendix A.
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Finally, it is of interest to compare the results for the

simply supported/guided plate of Figure 7-9 to the results for

a simply-supported circular plate obtained by Moshaiov and

Vorus. It is recognized that the two cases are not equivalent.

However, one would expect the two plates to behave globally in

a similar fashion. This is in fact the case, with both

deflections and plastic zones showing reasonably good agreement

in view of the differences between the two configurations.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1 Summary

This thesis has developed a formulation for solving

axisymmetrically loaded annular plate bending problems using

boundary integrals. This particular formulation is unique in

that it treats the annular plate as a one-dimensional problem,

using "ring" type Green's functions to determine unknown

boundary conditions and arrive at a plate bending solution.

The formulation allows a numerical incremental load method to

be used in the plastic range for the treatment of non-linear

behavior. Results in the elastic range show excellent

agreement with results obtained using a conventional analytic

solution. In the plastic range, results are in reasonable

agreement with those obtained using a finite element method.

8.2 Conclusions

This thesis treats the two-dimensional problem of analysis

of axisymmetrically loaded annular plates as a one-dimensional

problem. Using a method of solving one-dimensional problems
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with boundary integrals developed by Butterfield, the thesis

demonstrates that a closed form solution for the annular plate

problem can be obtained. It further demonstrates that this

approach is suitable for the use of an incremental load method

to obtain a solution in the plastic range.

The formulation developed in this thesis is advantageous

over a conventional analytic solution in that it allows a wide

range of problems with different loading and boundary

conditions to be soived using a single algorithm. Further, the

simplicity of the approach is useful from an educational

standpoint in the teaching of boundary element methods.

8.3 Recommendations for Future Work

There remains room for much additional work in this area.

Some suggestions follow:

1. A formulation for axisymmetrically loaded continuous

circular plates remains to be developed. The work presented

here lays a foundation for the continuous plate formulation.

However, extending this method to the continuous plate case may

require some modifications.

2. In developing a formulation for the simple beam

problem using boundary integrals, Butterfiild uses both a

direct and an indirect method, and shows that they yield the

same result. Only the direct method is presented in this
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thesis. The indirect method is a more intuitive approach than

the direct method, and offers advantages in furthering the

understanding of a boundary integral solution. It would,

therefore, be worthwhile to pursue an indirect method as well

as a direct method in developing a boundary integral

formulation for circular plate geometries.

3. The Green's functions selected for this anlysis

involve many terms and are awkward from a computational

standpoint. More thought needs to be given to selecting a

"ring" type Green's function that is simpler and therefore

offers advantages in simplifying calculations and reducing

computational time.

4. For the plastic range, the lack of close agreement

between the results presented in this work and those obtained

by Armen et al using a finite elemet method need to be better

understood. Additional comparative data should be found or

developed to increase confidence in the results presented in

this work.
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APPENDIX A

SELECTED GREEN'S FUNCTIONS

This Appendix presents the selected Green's functions and

required derivatives that are used to solve the plate bending

problems in this analysis. The functions which mathematically

describe the deflection, slope, radial and tangential moments,

and shear are obtained from Roark.

A.1 Description of Geometry and Sign Conventions

As discussed in Chapter 4, the first Green's function

selected for this analysis describes the response of annular

plate that is simply supported at the outer radius and

unsupported along the inner radius to a ring load. Figure A-1

depicts this plate configuration and important notation.
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---- I

Figure A-1. Representation of Green's function used in

the analysis.

Roark uses a sign convention with deflection WG positive

upward, slope +G positive when the deflection wG increases

positively as r increases, moment Mr positive when creating

compression on the top surface of the plate, and the shear

force QGr positive when acting upward on the inner edge of an

annular section. Subscripts c and d refer to the radial

position.

This sign convention differs from the sign convention of

Timoshenko, which has been adopted for this analysis.

Accordingly, adjustments must be made. Specifically,

Timoshenko takes deflection to be positive downward and shear

to be positive when acting downward on the inner edge of the
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plate, such that the signs for these items as given by Roark

must be changed.

For slope, Roark uses a convention opposite to that of Eq.

(2-2-1) and the convention used by Timoshenko. This

difference, combined with the difference in defining the sign

of defiection, effectively cancel each other, so the sign of

slope from Roark does not change for this analysis. Finally,

for moments, Roark and Timoshenko use the same sign convention,

so no sign changes for moment terms are necessary.

The formulas in the sections which follow include a number

of general plate functions and constants that are not depicted

in Figure A-[. Functions L and G and their derivatives are

included in Section A.7; constants F and C are included in

Section A.8.

A.2 Singularities

it is not possible to evaluate the Green's function and

associated derivatives at the exact radial location where the

ring load is applied, due to singularities. To avoid this

problem on the boundaries, the ring load is positioned a small

distan,-e inside the outer plate radius and outside the inner

plate radius (0.00001 inches for the results presented in

Chapter 7). During final review of this thesis, it was noted

that because of the singularity at r=ro, the domain integrand

involving plastic moments of Eqs. (5-4-2 through (5-4-6)
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includes singularities. Therefore, the limiting values should

be explored and a correction applied in way of the singular-

ities. Insufficient time was available to repeat the analysis

with the applied correction to see its effect on the results.

Note that this correction affects only the solution in the

plastic range.

A.3 Deflection, Slope, Moment and Shear

The following expressions describe deflection wG, slope

#G, radial moment MGr, and shear QG corresponding to the first

Green's function:

3
r

wG -w Gd - d r F I pC - G 3

D

2
r

4G = 4Gd F pG - G6D

D
MGr = 4Gd - F P r G

r

r
QG G o- r-ro>

r

where

%wGd PC pc C1L' - L
D C 7
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2

PGC

Gd D L
DC

D plate flexural rigidity (Eq. (2-i-8

PG = magnitude of ring load
0

<r-r > = singularity functiono

The expression <r-ro>
° 
represents a singularity function.

The function is equal to zero if r<r o . If r>ro, the brackets

become like any other brackets. Hence, for r>ro, <r-ro is

(r-r o ) to the power of 0, which equals to 1.

A.4 First Derivative of Deflection, Slope, Moment and Shear

The expressions which follow describe the first deriv-

atives with respect to ro of wG, +G, MGr and 0 Gr- The first

derivative of w G corresponds to the second Green's function

required by the analysis.

dw G dW Gd dGd r dG3
Gd F r F_

dr dr dr D dr
0 0 0 0

d# G  d#Gd r dG 6
S - F

4  
P - -

dr dr D dro 0 0

dMGr dlGd D dG9
- - - -F PG r -

dr dr r dr
0 0 0
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dG r PG 0
-- -- <r-r )

dr r 0
0

where

dL
-3r dLdWGd PGc d o

dr D C 7  dr °

2

d#Gd PG c dLq

dr D C. dr

A.5 Second Derivative of Deflection, Slope, Moment and Shear

The following expressions describe the second derivatives

with respect to ro of WG, +G, MGr and QGr

d'WG dw dd r dG 2
2 = _ - _G r F1 + PG - 2

dr' dr dr D dr'
0 0 0 0

d #G d 2 4Gdr2 G
- F - pG - -

dr' dr D dr
0 0 0

22 2d MG  d4 D d'G- Gr Gd 9

2 - F - PG r -
dr "  dr r dro O 0
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d2Q

d0

dr 2
0

where

d2L

2 3 C -2 2dWGd PGC dr o  d 3

dr D C dr o0 70

d2 2 2
dGd PGC d L

2 2
dr' DC dr

A-6 Third Derivative of Deflection, Slope, Moment and Shear

The following expressions describe the third derivatives

with respect to ro of wG, #G, MGr and QGr

d3WG d3 d3 3dWGd Gdr G
- - r F 4 G - - 3

dr' dr dr' D dr'
0 0 0 0

d3 G d3 Gd r dG
= F + - -

dr' dr D dr
0 0 0

d3 3

MGr d 3G D d 3G
F 7 PG r -

dr' dr r dr'0 o 0

d 3G r

dr0
0
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where

d 3 L
C 3 c dr3 3d' Gd dGr 0 d L3

0 3

dW#Gd PG c 
2 d

dr D C dr 3

o 7o

d3 2 d3

d PGc Ld

dr D C dr 3
do 0

A.7 Plate Functions L3, L9, G3, G6 and G9 and Their

Derivatives

L-0 0 1 In - -0
L3 4 c I c

dL 1 3 r2
dr c o0 + 2 o 0

Sin r 2 c 2  -
dr °  4 c o CC

d 'L- 1 6 r ro I

- -- 0 I SL + 2-0
2 2 r 2

d 4 c 0 r 0

oIn c - 1 -

c 2 ro 0 4 c
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dL 9  
2 (3+ i

-- [ r

dr 4 c o

+2
r

3 1r c

d L 9  i I+ v) 3 (i -0

2r 22

0C 0

d 32 1 +.4 - 3 r (1 - u

dr 2 c r c
dr o  

o-) - c

0 0

r 0r r 2 + r + r - r-r

G1 r I 1r 02r
3 4 r r 0

dG1 3 r 2o r
d G3 0 + 1 in r + 2 <r-r >

r- 2 r 2 0

dr 4 r I r r
0

d2G 3 6 r r r 1 1 r-
- 1 - In +~ - r-r 0

dr 4 r r 0 r' r o
0

d G 3 In r I 2 -- 2 <r-r 

dr 4 r r r r 00

G o 0 + 2 In r <r-r >0-r
4 r r 2
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-- =3 o _0 + 2 In Lr <r-r >c
2 r o

dr 4 r r120

d'G 6 3 r 0

- r r=j<r-r )

4 0

d 2 r 2 r r
o 0

d G s  i 3i
S - -- r ++ <r-r >0

r 2 2 0

00

3 (+ v r r 0

dr r2

dro 4 1

22

+ 
1 

<r-r

dr~~ 2

o r r

2 2 0

dr = {- 2 (-+v) r 1i 1r -r>

rr

dr 4 r r

0 00
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A.8 Plate Constants F1, F4, F7, C,, and C 7

I i, d 1- v r d
F - -In - -

2 r 4 d r

F - ( + V) r + (I - v) r

F1 (12U r d

F - ( 1 - u --
7 2 d r

I + d l-V c d

C 2 c + 4 d

C - (1- ) -
C7 2 d c

A.9 Derivatives of the Green's Function With Respect to r

The equations describing non-linear plate behavior

included in Section 5-4 are in terms of the first and second

derivatives of the Green's function wG with respect to r.

These derivatives can be expressed with the aid of Eqs. (2-1-1)

and (2-1-7) in terms of moments and slopes as follows:

dwG

dr

d wG MGr +

2 G '
dr D r

Expressions for slopes and moments for the Green's
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function #G and Mar) are available and have been presented in

Section A.3. It is further noted that Eqs. (5-4-2) through (5-

4-6) require derivatives of the above two expressions with

respect to ro . This is accomplished via the expressions for

derivatives of 4G and MGr with respect to ro included in

Sect ons A.5 through A.7 above.
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APPENDIX B

COMPUTER PROGRAMS

This Appendix contains the computer programs developed to

perform the analysis work. A flow chart showing the overall

program structure is presented in~ Chapter 6.

The Appendix is organized with the programs INPUT and LOAD

presented first, followed by the program MAIN. The supporting

subroutines for the program MAIN follow that program.
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C
Cs
Ctssssssssssssss*Rssssssssss$sssstS$sttssssstssssssstst;Rs€sss$sssss **

Cs

C* PROGRAM INPUT
Cs
Cs THIS PROGRAM ALLOWS THE USER TO DEFINE THE PROBLEM OF INTEREST

Cs AND TO SET CERTAIN ADJUSTABLE PARAMETERS SUCH AS NUMBER OF DEPTH
CR INTEGRATION INCREMENTS. LOADING CONDITIONS ARE INPUT USING THE
Cs PROGRAM LOAD. TO RUN, THIS PROGRAM MUST ACCESS THE FILES GEOM.DAT,
CS BC.DAT,BCPOS.DAT AND ADJ.DAT

Cs

CH
C

PROGRAM INPUT
C

IMPLICIT REAL8 'A-HO-V
CHARACTER#l BFLAGI,4),BFLAG2(4), RESP

CHARACTER$19 LBL(H),LGEOM9)

CHARACTERR25 LADJ(6)
C

REALt8 ADJ(7),BC(4),GEOM(9),NU
C

INTEGER POS(8),BCPOS(BR,MN
C
C;

CS
Cs INPUT MATERIAL CONSTANTS AND PLATE GEOMETRY. THE FLEXURAL

Cs RIGIDITY IS CALCULATES BASED ON THE INPUT PARAMETERS N 1 THE
Cs TOTAL NUMBER OF PARAMETERS

C*

CS

C

N=9

C
LGEOM(I''OUTR RADIUS A =

LGEOM 2)='INNER RADIUS B =

LGEOM(3)='POISSON RATIO NU

LGEOM(4)='PLATE CONSTANT D
LGEOM(5)='THICENESS T
LGEOM(6S='YIELD STRESS
LGEOM'7 ='YIELD STRAIN
LGEOM,8'='UTIMATE STRESS
LGEOM'9 'ULTIMATE STRAIN

c

WRITE ,1

I FORMAT S,6X,'WOULD YOU LIE TO SEE THE C'ERENT PLATE DIMEN' N

-,,2X.'AND MATERIAL CONSTANTS Y N

READ('.30 RESP

c
IF RESF EQ. 5 THEN

WRITE -,2
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2 TORMAT(//,21, 'TEE CURRENT VALUES FOLLOW. NOTE TEAT A ZERO'.
* /,2S, 'VALUE IS SHOWN FOR D WREN T AND I ARE GIVEN AWE VICE'.
+ /,25,'VERSA
OPE N)A, FILEz' GROW EAT' ,STATUS=' OLD')
WRITE R, 3D)
DO S I=I,N

REAE(6,7D) GROW(S)
WRITE~atS) LGEOM(I),GROW) I

6 FORWAT(2X.A22,F20.1O)
a CONTINUE

CLOSE(S)
KNDIF

C
WEITE(a, 9)

9 FORMAT)/',SS. 'DO YOU WISE TO INPUT OR CEANGE GEOMETEY OR',
* /,2S, 'MATERIAL CONSTANTS (YIN) ?'

REAE(E,3I) REEF'
C

IF (RSP EQ. '1'') TEEN
C

WRITE) RiD)
10 FORWAT)/.2S, 'INPUT TEE VALUES USING DECIMAL NOTATION.....

DO 12 1=1,3
WRITE(E,20) LGEOW(I)
REAE(*,7D) GEOW(I)

12 CONTINUE

DO 13 lz5,9
WEITE(S,20) LGEOW I)
READi*75) GEOWIl

13 CONTINUE
GEOM(4)'GEOMWS)/GEOM(?)*GSOW()**33.0/12.0/(1.O-GEON)3)*2G)

C
OPEN(6, FELE 'GEOM. EAT' ,STATUS ' NEW')
DO 15 I=1,N

NEITE(S,70) GEOW(S)
15 CONTINUE

CLOSE(S)
EVE IF

C
C

C
C INPUT PLATE ROUNDARY CONDITIONS
C

Csts*EA*E:*SAt*AZSSSEEREISEE*E*SNS
C

LRL(l)='SEEAE AT A
LEL(2)''WOMENT I.T A
LEL)3)='SLOPE AT A
LRLC4)='DEFLECTION AT A=
LRL(S(= 'SHEEN AT B z
LEL(S1='MOWENr AT B
LRL)7)= 'SLOPE AT 8
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LBL(B)=' DEFLECTION AT B
C

OPEN(14. YILgz' CLBL. DAT' ,STATUS=' NE N'
DO 155 1=1,8

WRITE(14.156) LBL(I)
155 CONTINUE
156 FORMAT(A22)

CLOSE( 14)
C

WRITB)*, 180)
160 FORMAT)//,6X, 'WOULD YOU LIKE TO SEE THE CURREN7 PLATE BOUNDARY'

/ .2X CONDITIONS (Y/N)
READ(R,3;) RESP

C
IF (RESP EQ0. 'Y') THEN

OPEN(I11, ILE=' BC. DAT' *STATUS=' OLD')
OPEN) 12. FlLE=' BCPOS. DAT' ,STATUS=' OLD')
WRITE( S.30)
DO 165 1=1,4

READ(11,70) BC) I)
165 CONTINUE

DO 190 I 1.8
READ(12,100 BCPOS(I)
IF (BCPOSIl) GT. 0) THEN

WRITE)R,186) LBL(I) ,EC(BCPOS(I))
186 FORMAT(2X,A22,F20.10)

END 1
90 CONTINUE

CLOSE( I1I
CLOSE) 12

ENDIV
C

WRITE(;, 17)
17 FORMAT( //.60.'DO YOU WISH TO INPUT OR CHANGE PLATE BOUNDARY',

,2X,*'CONDITIONS (YIN) '

READ(*,30 HElP
C

IF (RESP EQ0. 'Y') THEN
WRITE) S 19)

19 FORMAT(//,6X, 'INDICATE WHETHER THE BOUNDARY CONDITIONS FOR THE',
0 /,2X,'PLATE ARE KNOWN OR UNKNOWN BY TYPING IN THE LETTER -U"',
0 /,2X, 'FOR UNKNOWN BOUNDARY CONDITIONS AND HITTING RETURN FOR',
0 /,2X,'KNOWN BOUNDARY CONDITIONS',/ii

C
WRITE(R,20) 'SHEAR AT A'
READ(*,30) SPLAGI(Ii
INRITE(*,20) 'MOMENT AT A
READ(*,3D) BFLAG1)2)
WRITE)B.20) 'SLOPE AT A
READ(*,30) BFLACI(3)
WRITE)E.2D) 'DEFLECTTON AT A'
READ( R,30) BFLAG1)

WRIITE(*,20) 'SHEAR AT B
9EAD) S,3D) BFLAG2 L:
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WHITE)E,20) 'MOMENT AT B
READ(*,30) OFLAG2(2)
WBITgf*,20) 'SLOPE AT B
READ(*,30) RFLAG2)3)
WRITE)*,2O) 'DEFLECTION AT B
READ)S.30) BFLAG2(4

20 FORMAT)2X,A22,\)
30 PORMAT(Al)

C
WRJTE) 8,40)

40 IORMAT 7 6 6, 'TY)PE IN THE KNOWN BOUNDARY CONDITIONS USING
621. 'DECIMAL NOTATION WHEN PROMPTED',/!'

C
OPEN)8,FILE='BFLAG1.DAT',STATUS='NEW')
OPEN)9,FILE='BFLAG2.DAT',STATUS= NEW')
OPEN( 10, FILE=' BC. DAT ,STATUS=' NEW'

C
DO 50 I=1.4
WRITE(8,30) BILAGI(I)
IF )EFLAG1(I) NE. 'U') THEN

L=L. 1
WRITE)$,20) LBL))
RgAD(*,70) BC(L)
WHETE(1O,70) BC))

END IF
s0 CONTINUE

C
DO 60 lzl,4

WRZTR)9,3D) SYLAG2fli
IF (BFLAG2(I) NE. 'U') TEEN

L= L~
WRITE)S,20) LBL) 1.4)
READ(*.70) BC(L)
WRITE)]0,70) BC(L)

END IF
60 CONTINUE

C
70 FORMAT(F20.10)

C
CLOSE()
CLOSE)9)
CLOSE) 10)

C
OPEN) 1,FILE=*POS.DAT , ITATIJ=' NEW)
OPE N)12. FILE'BCPOS. DAT' ,STATUSz' NEW';

C
LzS
DO 80 1=.4

IF (BFLAGI I' EQ. U' THRN
L' L- 1
POS Il. L
BCpOS1 =0

ELSE
M'- I1
BCPOS I "

-AL 

98



POS f=0
ENDIF

C
WRITE()I1.100' POS(I1

WRITE,12,100' BCPOS'I.
C

80 CONTINUE

C

DO 90 I=5,8
IF (BFLAG2VI-4( -EQ. 'U'' THEN

L=L-1
POSI)=L
BCPOS( I;=

ELSE
M:M.l
BCPOS'II=M
POS(I) 1

ENDIF

C
WRITE(I1.1

00
) POS(I)

WRITE(12,10O) BCPOS(I)
C

90 CONTINUE

CLOSE( 1)

CLOSE(12)
100 FORMAT(Il)

ENDIF
C
C:
C*SRZ*:z$$*t$ $*VSE:: ssss*tEszs$*EESV*EHE*t st**$nt** ass:

CA
Cs INPUT CALCULATION ADJUSTMENT ITEMS. N IS THE NUMBER OF
CS INPUT PARAMETERS IN THIS SUBMODULE. OBSERVE THAT SUBSEQUENT TO

CE THE DEVELOPMENT OF THIS MODULE, PARAMETER NUMBER 3 WAS NO LONGER

CE ACCESSED FROM ANY OTHER PROGRAM, AND THEREFORE SERVES ONLY AS A

CS DUMMY PARAMETER. THE REMAINING PARAMETERS HAVE THE FOLLOWING

CS MEANINGS
CE
CA I. EPSILON REFERS TO THE DISTANCE BETWEEN THE RING LOAD

CE AND THE BOUNDARY. NOTE THAT IN SOME INSTANCES, LETTING

CE EPSILON EQUAL TO ZERO CAUSES A DIVIDE BY ZERO TYPE ERROR.

Cs

CA 2. THE INCREMENTS FOR R REFER TO THE STATIONS ACROSS

CE THE PLATE. THIS APPLIES TO THE NUMBER OF INTEGRATION

CS INCREMENTS FOR DISTRIBUTED LOADS, AS WELL AS THE NUMBER

CE OF DATA POINTS FOR THE RESULTS.

CE

CA 3. THIS PAVNMETED IS NO LONGER USED
C*

CE 4. THIS REFERS TO THE EXTENT BY WHICH THE GREENS
CE FUNCTION PLATE GEOMETRY OVERHANGS THE ACTUAL PLATE.

C: FOE EXAMPLE, A VALUE OF 0.5 MEANS THAT THE INNER RADIUS OF

C* TRE RING LOADED PLATE DESCRIBED BY THE GREEN'S FUNCTION
CA OVERHANGS THE HCTLAI PLATE BY 0.5 UNITS

r9
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. t. THE LOAD INCREMENT IS THE PERCENTAGE OF THE
Ct ORIGINALLY SPECIFIED LOAD MAGNITUDE THAT IS APPLIED DURING
Ct EACH LOAD INCREMENT AS THE PLATE IS LOADED IN THE PLASTIC
C% RANGE
Ct
C% 6. THIS IS THE NUMBER OF INTEGRATION INCREMENTS USED TO
Cl DETERMINE THE PLASTIC MOMENT ACROSS THE PLATE.
CR

Ca 7. HMS IS THE ROOT MEAN SQUARE OF THE PLASTIC MOMENT
Cs INCREMENTS FOR EVERY POINT IN THE PLATE WHERE THE PLATE IS
Ca NO LONGER ELASTIC. THIS IS COMPARED WITH THE RMS VALUE FOR

CR THE PREVIOUS INCREMENT, TO SEE WHETHER THE SOLUTION HAS
CR SUFFICIENTLY CONVERGED. I% CONVERGENCE MEANS THESE NUMBERS
Cl AGREE TO WITHIN LESS THAN 1%

Cs

Cs
C

N=7
LADJ(1)='EPSILON FOR HO
LADJ(2)=WINCREMENTS FOR R
LADJ(3)='WIDTH INTG INCH
LADJ(4)='BOUNDS FOR A AND B
LADJ(5)='LOAD INCREMENT
LADJ(6)='DEPTH INTG INCH

LADJ(7)='% RMS CONVERGENCE
C

WRITE(*,f02)

102 FORMAT) /,6X,'WOULD YOU LIKE TO SEE THE CURRENT ADJUSTABLE'

/,2X,'PARAMETER SETTINGS'

READR,3O5 HESP
IF RESP ,EQ. 'Y') THEN

OPEN 16IFILE 'A J.DAT',STATUS 'OLD')
WRITE(*,30 "

DO 108 T=I,N
READ(16,70) ADJ(Z)

WRITE , 106) LADJ )ADJ(I)
10E FORMAT2,A25,F205 10.

108 CONTINUE
CLOSE(16)

ENDIF
C

WRITE($,II0)
110 FORMAT(/IGX,'0O YOU WISH TO INPUT OR CHANGE ANY COMPUTATIONAL',

/ /, X,'ADJUSTMENT ITEMS (YiN '\
RFAD(¢,30 RESP

IF RESP .EQ. ')' THEN

WRITE ',120

!_10 FORMAT ' INPUT THE VALUES USING DECIMAL NOTATION ......

DO 125 N-',N
WRITE .,126 LADJ.T'

READ -. 7C A 0 I

I S TO NT1NU0
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126 FORMAT 2X.A26,\o

C OPEN 1 3 PFILE='ADJ.DAT',STATUS'NEWN

DO 130 I=1.N
WRITE(13.7O) ADJ(I,

130 CONTINUE
CLOSE 13)

C
ENDI F

C
WE! TE(*.135;

135 FORMAT(//', YOU ARE LEAVING THE INPUT MODULE',///)

C
END
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C

C;
Cs PROGRAM LOAD
CS

CS THIS PROGRAM ALLOWS THE USER TO INPUT THE DESIRED LOADING
Cs CONDITION FOR THE PLATE. UNIFORM DISTRIBUTED LOADS, RAMPS, AND

CS PARABOLICALLY DISTRIBUTED LOADS ARE PERMITTED, AS WELL AS RING

CS LOADS. TO RUN, THIS PROGRAM MUST ACCESS THE FILE LOAD.DAT.
C*
CS USING THE INPUT DATA, THE PROGRAM CALCULATES THE TOTAL LOAD

CS PER UNIT LENGTH THAT ACTS ON A RING OF TEE PLATE SURFACE OP A
C* WIDTH DETERMINED BY ADJUSTABLE PARAMETER *3 OF THE INPUT

CS PROGRAM
C*

CS

C
PROGRAM LOAD

C
IMPLICIT REAL*8 (A-H,O-Z)

CRARACTERSl RESP

CHARACTER*30 LBL(4)

REAL*R LD(50)

INTEGER N

C
LBL I)='MAGNITUDE AT OUTER RADIUS
LBL2)='DISTANCE FROM PLATE CENTER
LOL 3]='MAGNITUDE AT INNER RADIUS
LBL 4) 'DISTANCE FROM PLATE CENTER

C
OPE ,6,FrLE ' LOAD.DAT',STATUS='OLD'

READ(6,90) LD
N=INT(6.02.09LD(6r)
CLOSE(6)

C
WRITEf*,10)

1I FORMAT(//,' DO YOU WISH TO SEE THE LOADING CONDITIONS',

/,' (YIN) I

READ(*,60V RESP
IF (RESP EQ. -Y') THEN

WRITER*,IS)

15 FORMAT://,' THE EXISTING LOADING CONDITIONS FOLLOW

DO 40 I-1,4
WRITE(S,3I) LBL(I),LD(l)

30 FORMAT(2IA30,F2O.10

40 CONTINUE
WRITE ,EC

IF LD 5 .E3. 1.0, THEN
WRITE(*,8D 'LOADING IS LINEAR'

ELSE
WRITE ,80 'LOADING IS PARAbOCL:C'

ENDIF
WRITE v,60

15
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Do 45 I:7,StINTILD)6))
3jz,2
wEITE(1,.SD('
WHUTE(s,43V 'MAGNITUDE OF RING LOAD'. 1-6, z' ,LD'J

WRITE)',
4 3

) 'LOCATION OF RING LOAD' I-6, ' ',IL.

43 FORMAT(25A24,I3.A3,F20.10G
45 CONTINUE

END IF
C

WRITE' * *46)

46 EORmA'I(/, ,3'Do VOt WISH TO CHANGE THE LOADING CONDITIONS',

(YIN) I''')
READc*,60; RESP

C
IF IEESP EQ. 'Y') THEN

50 FORNAT)//,21, 'DO YOU NIS'd TO CHANGE THE DIS2RIUTED LOAD''

/I'l (Y/N) I '\)
READIESO0) HESS

60 FOHMAT(AI)

IF )RESP -EQ. 'Y') THEN

NH ITES' 70)

70 PORMAT),//,25, 'SPECIFY THE LOAD PROFILE USING DECIMAL',

NOTATION .. '1

DO 75 1=1,4
WRITE *680) LHL()

READ'S,90 LD'Il
'15 CONTINUE
SO FORNAT.12X,A'3I,N
90 FORNAT(F 20.IG)

C
WRITE)', 100)

100) PORMAT //.2X,' IS THE LOAD LINEAR OR PARABOLIC (1.'?

HEAD)',60) RES
IF (RESP EQ0. ' L') THEN

LD,5) z 1.0
ELSE

LU(S) z 2.0
END IF

END IF

WRITE)', DIG)

110 FON1AT//,2D.'D
0 

YOU WISE TO MODIFY ANY RING LOADS Y N

READ 9,60' HESP
IP HISP .UQ. 'Y' THEN

WAITE *.120

120 FORMAT' ZX,'THE NUMBUR OF RING LOADS )INTEGER

READ $,120 N
(30 FORMATIS3

LU 6 REAL'N

DO 200 lsl.N
V -2
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WRITE s,60
WRITE 9,210 'MAGNITUDE OF RING LOAD' I.

READ t.90 LO

WRITE ',210 'LOCATION OF RING LOAD ' I,
READS,90' LD 1.1

2% CONTINUE

2% FORMAT 2X.A23.13,A2,')
ENDIF

OPEN,7.FILE 'LOAD.DAT',STATUS'NEW')

D 219 I-,50
WRITE',90 LD I

219 CONTINUE
ENDIF

WRITE ',220

220 FORMAT, 6X,'YOU ARE LEAVING THE LOADING MODULE'-
END
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C
C

C.
Cs CALL TRE SUBROUTINE YLD, WHICH WILL RETURN A LOAD MATRIX
Cs SUCH THAT YIELDING HAS JUST STARTED TO OCCUR IN rEE PLATE
Cs

C=
C

CALL YLDERK,IMAX.LDMATI
C
CS

C.
Cs REPEAT TRE PROCESS, AND THEN CALL UPDATE TO REVISE OUR STATE
C* MATRIX TO REFLECT TEE CONDITION OF THE PLATE AT THE ONSET OF
Cs YIELDING
CS
CS*Z*R?$ESSSSSaa*SIRZSSa$*SSS$aS*$.aA***S**$a*Sa***SSN*SS*SSS

CS

CALL AMATR(RPLAGI,BFLAG2,BC,BCPOS,POS,LDMATI,LRS,AMAT-
CALL GAUSS(LRS,AHAT,X)
CALL BCM(POS,BC,XRCMAT)
CALL SOLVER(LDMATI,BCMAT)
CALL UPDATE STTI.IMAX.OUTLDMATI,LL,LDMATO
CALL RESUL(MSTTI,COUNTLDMAT0.

C
CS

CS
C* NOW, INPUT AN INCREMENTAL LOAD, AND COMPUTE THE RESULTING
CS MOMENTSDEFLECTIONS ETC, USING AS AN INPUT THE PLASTIC MOMENTS
CS (IF ANY, AND OTHER DATA FROM THE PREVIOUS LOAD CASE
CS
CS*SSA*SSN*S*$SSaSSSa**SSSS$aS*SSSS**SNN$S**S;SSS*ASS*$V$SS

CS
C

DO 110 I=I,NN
LOMAT1I1)zADJ 5, LDMATO(I,

110 CONTINUE
C
116 CONTINUE

C
C WRITE(*,130 STT.IMAX,9j,STT'IMAX,O,
C 130 FORMAT 5X,'MRP IN 7 '.F20.10,' MTP IN ',F".015

CALL AMATR BLAGIBFLAG2,BC.BCPOSPOS,L' ATI.LHS,AMA-
CALL GAUSS LHS,AMAT.X
CALL BCM POS,BC,XBCMAT
CALL SOLVER LDMATI,BCMAT
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C
CS

C s

CS 00 IOONTO0 THECSI2BROUT!NE PLAST TO CALCLLATE THE INCREMENTAL PLASTIC
CS MENTS AT EACH STATION ACROSS THE PLATE WHERE YIELDING HAS
Cs OCCURRED. THE PLASTIC MOMENTS THAT ARE RETUIRNED BY PLAST ARE
CS SQUARED AND ADDED TO THE TOTAL IN THE VAR:ABLE RMS. EMS IS
CS COMPARED TO THE RMS VALUE FROM THE PREVIOUS ITERATION (SANED AS
CS EMSi I
CS

CSSSSSSSSSSSSSSSSSSSSSSSSASSSSRS*S~*S

C,
C M M

RMD I RM
RZN4S 5 0 ,6
DO 200T. AD S

STTILI,I,-STT(I,9
STTl 1,2)-STT;1, 10:
CALL PLAST I,
IF (SET(I.LZ; G9. GEOM(6)) THEN

RMS=RMS'DTT' I,9,s52.0,STT(D,I0 5*2.0

200 CONTINUE
C

WRITE.S,810 EMS
RI0 FORMAT SD. RMS P .20.10

CS THIS WAS THROWN IN TO AVOIS A DVYIDE BY ZERO, UNTIL TE PROCESS
Cs HAS BEEN "PRIMEE)"
CS
C

IF RMS DQ. 0.05 THEN
RMS -I .

N ND I P
C

IF ABSSGRT;RMS)-SORT(RMS1))/SQHT;RMS,5100.S GT. ADJ;7y THEN
DO H15I IRNN

STT' I.10,=DTTU1, i0)STTl( 1,2; )'2.C
B15 CONTINUE

GOTO 116
END I
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CS

CS
Cs CALL THE SUBROUTINE UPDATE. WEICH WILL UPDATE OUR STATE
C* MATRIX AND OUR LOADING MATRIX TO REFLECT THE CONDITION OF THE

Cs PLATE AT THE ENW OF THE LOADING INCREMENT. TEE PARAMETER
Cv COUNT KEEPS TRAJH OF LOAD INCREMENTS FOR PURPOSES OF DISPLAYING
Cs RESULTS. WHEN COUNTIO, RESULTS ARE DISPLAYED A..U WRITTEN TO
Cs FILE. XIE RVERY 10 LOAD INCREMENTS,

CS

Cs
C

CALL UPDATESTTI, MAX,O!'T,LDMATIIL,LDMATO

CALL RESUL:M.STTI,COUNT,LDMATO
IF COUNT EQ. 10 0 THEN

COUNT=O.O

END IF
COUNTzCOUNT-i 0
M-M I

WRITEVS,I17 M
117 FORMAT SX,'LOAD INCR ',13i

C

CS

Cs
C* CHECK TO SEE IF EXCEEDING ULTIMATE STRAIN. IF SO, KICK
Cs OUT OF THE PROCEDURE. IF NOT, WE SHOULD INCREMENT ON UP AGAIN
Cs BY USING AS OUR INPUT TAP INCREMFNTAL LOAD MATRIX.

Cs

CS
IF OUT NE. I' THEN

GOTO 116
END IF

C

CALL RESULM,STTI,COLNT.LDMATO

C
CLOSEI5

C
END
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c
C*

C'
Cs SUBROUTINE INTEG
C*
CS THIS SUBROUTINE IS CALLED BY THE PROGRAM MAIN TO CREATE THE
Cs ARRAY LDMAT. THIS ARRAY CONTAINS THE VALUES OF THE TOTAL LOA[
CS FOR EACH SEGMENT ALONG THE PLATE RADIUS. IT IS CONSTP!CTED
Cs BY USING THE AVERAGE OF THE TWO ENDPOINTS FOR DISTRIBUTED
Cs LOADS AND ADDING TO THIS VALUE THE MAGNITUDE OF ANY RING LOADS
C$ THAT ARE SITUATED WITHIN THE SEGMENT.
CS

SURROUTINE INTEG LDLDMAT'
C

IMPLICIT HEAL8 A-HO-Z
REAL8 LDMAT(5CLD,50,NU
INTEGER N

RINCLUDE:'COMMON.FOR'
C

A GSOM I
RmGROM,2'
NU>EOM( 3
D GROM 4

C
K-NINT ADJ 2
DEL: A-B ADJ 2
R=R

N:NINT 6.0-2.0*LD 6,'
C
C*

Cs
Cs CHECE TO SEE IF THERE IS A DISTRIBUTED LOAD. IF NOT, PROCEED
CS TO THE SECTION FOR RING LOADS
C.

Cs
C

IF LD I, INE. 0.0 OR. LD:3 NE. 0.0 THEN
C

SLP LU -LD : . 2 * LD 4
DO 152 tLI,K

110
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C~

C

C s
C: ... SS**a55 ...55.. 5351#5****12**S**53

C'

CS SECTIO 5O b!EHL THE.N7NL OD
Cs

2F D14 A L T -

EE S E R .G. LD 4 T 11EN
L D MAT I L P R-OS 4 -D FL 2.0 L D 3 D E L

c

LDMAT, S =O.0
C

END SE
c

C.

C. * 51(77 0 F OR -APABO 1.5( LCALS' Y - 0*

ELSE IF LOS .EQ 2.0 TEN

RH RDEL
PE L D 2 -L D4 52 .0 4.0, LO D -L D 3
IF L.D 1) GT LD!3'' THEN

Y' H-DE,2.0-,D 4 **2.0,4.0 P-LD 3
ELSE

Y=- LD2(H-Hi.)5. 4.0 P-LD 4

IF R-LD1' -GS. DEL'S00 THEN'
LDMAT S)=0.0

ELSE !F H .GT. LD 4 THE%.

LSSNAT I 5F0

ELSE

LSMA7 I V



C
100 CONTINUE

ENDIF

C
Cs

CsCs SECTION FOR ADDING IN RING LOADS

Cs
C

J=5

IF N NE. 0) THEN
DO 300 I=7.-NINT:LD;6I

J=J;2
L=INT(LDJ-I-B/DEL.I

LDMATL ,LDMATL)+LD(J)

300 CONTINUE
ENDIF

C
C

RETURN
END

Cs

Cs
Cs SUBROUTINE AMATR
C*
C) TRIS SUBROUTINE IS CALLED BY THE PROGRAM MAIN TO CREATE THE
C$ 4X4 A MATRIX, WHICH IS SOLVED USING GAUSS ELIMINATION TO
Cs DETERMINE THE UNKNOWN BOUNDARY CONDITIONS.

C$

C€
C

SUBROUTINE AMATR:BFLAGIBFLAG2,BC,BCPOS,POS,LDMATI,LHS,AMAT!

C
IMPLICIT REAL$8 A-HO-Z
CHARACTEV*2 EFLAGI 4 , BFLAG2 4

REAL8 BC.4 LHS 4 .NC,NV-.GRNMH 1 4.6 ,GkNMT2 4. ,

AMAT 4,4 ,LDMAT 4 LLTOT 4 ,LDMATI'5 ,MFRTIT 4 .MFTTOT 4

STTAV 50,2

INTEGER POS 8 .BCPOS 8,M.S

EINCLLDE.'COHNGN.FOR'
C

ATGEOM
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B =GEOM (2,
NU=GEOM{ 3)

INC=ADJ( 1
C

DO 101 I=1,4
LKE I)=O0.0
If (1 EQ0. 1 OR. I EQ. 3, TEN

ROzA- INC
ELSE

RO=B. INC
ENDI F

C
RzA
CALL GRNFNC(,RO,NU,RNMT!
R= B
CALL GRNFNC(E.RO,NC,D.GHNMT2

C
C*

Ca
C% REDUCE THE TERMS ORIGINALLY ON THE RBS TO A 4X4 MATRIX
Ca COEFFICIENTS (AMAT) AND A 4XI1 MATRIX OF NON-COEFFICIENT
Cs TERMS tLHS)
C;

C*
C

IF (I EQ. I OR. I EQ. 2) THEN
E =0
L=O0
DO 90 J=1,4

IF (EFLAGIJi, NE. U') THEN
EK'1-
LHSj)-GN4T1 J,,:C KAE'-1.0 s J-I,-LHStI)

ELSE
L L.1
AMAT(I,L)=GENMT1(JI);As)-1.O(EE(J)

ENDI F
73 FORMATf2X,FIO.5)
90 CONTINUE

C
DO 100 J=1,4

IF tEFLAG2'J) NE. 'U' TEEN

LEHS I LGRN'IT2.J.1 -BAC N $9; -1 --J*IHS
ELSE

L-L- 2
AMA'S 1,L =GRNM"T,J. (ER; Es J-1

ENS (F

ELS

II



L=O
DO 110 J=1,4

IF RBFLAG1,J) .NE. 'U' TEEN

ELSE

AMA? (ILI 'GRNMTI1 J.2) 2AE(-1.0) ** (3
END IF

110 CONTINUE
C

DO 115 J=1.4
IF (EFLAG2uJ) -NE. 'U' THEN

K=1 1
LRS)I):GRNMT24J.2)IEC)EER)*-l)**(J).LES)V

ELSE

AMA?) I, L)=GRNMT2(J, 2) aRE -1) SE J-1
END IF

115 CONTINUE
END IF

C
CS

C* MOVE TEE TERMS ORIGINALLY ON TEE LBS TO TEE RED. FORM A NEW AMAT
CS MATRIX AND A NEW LES MATRID WHICH CORRESPOND TO TEE A AND B MATRICES
Cs OF TEE SYSTEM AXRB

Os
IF EBFLAGl 4; lNE. 'U' AND. I -EQ. 1) THEN

LRS(PL''UStX).ROsBC)RCPOS,4.:
ELSE IF ;BFLAG1)4) EQ. 'U' AND, I EQ. 1) TEEN

AMATII,P0514, PAMAT( I.POS)4')-RO
END IF

C
IF )EFLkG2(4) .NE. 'U' AND. I EQ0. 2) TEEN

LEE) .-= US 2) .ROSRC ROPOS El,
ELSE IF IRFLAG2I4) EQ. 'U' AND. I EQ. 2) TEEN

AMATII, POS()) AMATkl, POSIE 11-RO
END IF

C
IF (BFLAGI(3) .ME. 'U' AND. I EQ. 3) TEEN

LESII)=LRSI3I-ROSEC(BCPOS(3);
END IF
IF 'EFUAGI 4) NF. 'U' AND. I .EQ. 3 THEN

LAS 3 -,E 3 -BC NCO 4
ENDI F
IF 'EFLAO).3e EQ. 'I' ANSI. I EQ. 3 TEEN

AMA? IPOS,3' =AMAT IPOS,3 -R0
END IF
IF EFLAG) 4 .E3. 'U' AND. I EQ. 3 TEEN
AM&? !.POS 4 =AMA? I.POS 4 -1.0

FN.)I F

114



C
ST CEFLAG2(3) NE. 'U' -AND. I EQ. 4) THEN

LHS(4)rLHS(4-NOtBC(BCPOS(7fl
END! F
IF (BFLAGZ(4) N9. 'U' AND. I EQ. 4) THEN

LED 4mLBS (4) 'BC) BCPOS (8
END IF
IF (BFLAO2(3) EQ. 'U' AND. I -EQ. 4- THEN

&MAT( I POS (7) ) AMAT) I, P05(7) 1 '80
END IF
IF (EFLAG2(4; EQ. 'U' AND. I EQ. 4V TEEN
ANAT(1,pOS(B))=AI4AT(D,POS )l.0

END IF
C
101 CONTINUE

C
Cs

CE
CS FINALLY, ADJUST TEE LBS TO ACCOL'NT FOR THE EXTERNAL LOAD
C* AND PLASTICITY BY CALCULATING AND SUBTRACTING APPROPRIATE
CS TERMS.
Cs

CS
C

K=NIKT(ADJ)2))
DEL=tA-E. /ADJ(2)

C
DO 500 U:1,E

R=B-DEL/2.O'REAL)I)SDEL
BO A-ADJ() 1

STTAV(U,2)U(STT(D,1O)*STT(U.1,10))/2.0
CALL GRNFNC'R,RO,NC.D,ORNMTI)

LDTOT() 1'LOTOT)).LDMATI( I) SORNMTI 1. 1) SR
MPRTOT(1)=MPRTOT(1)'-STTAV(I,1-S(--ORNNT1)3,1j/D-

- NU!RSGR-NMTI(2,I))SDELSR
MPTTOT(1)=MPTTOT(1I'STTAV(I,2)S(-GRNMT1(2.1)NDEL)
LDTOT(3).LDTOTS3)4LDNAT1I)*GRNNTI(1,2)SR
NPRTOT(3)=MPRTOT(3)+STTAV(I, S)S(-GRNMT1(3,2 ''D-

* N/RSGRNNT1(2.2))SDEL*R
NPTTOT(3)=MPTTOT(3),STTAV(1,2)S(-GRNMT1(2,2)%DEL)

RO=B*ADJs 1)
CALL GRNFNC(R, RO,NU,D,URNMT1 1

LDTOT(21:LDTOT)2''LDMATI( I)SQRNMT1) 1, 1)58
MPRTOT[2VMPRTOT 2 .STTAVJ1,1S:-RNhIT) 3,1 D-

* NLREGRNMT1 3,1- DELER
MPTTOT 2 MPTTOT 2'-OCTAL' 1.2 v -GRNHT) 2,1vrj
LDTOT 4 -LDTOT,4 -LDMATI I *CRNMTi 1.2 IR
MPRTOT 4 =MPDTOT 4-STTAV- 1.1. -GR%'4T!: D. -

- NL'RSGNNMT1'2,2 '*DEL'S
MPTTOT.4 =MPTTOT(4 *STIAV- 1,2 - -CRNMT1 2-2 -11F1

500 C ON TINMUE
c
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DO 105 1=1,4
LHS(I)=LHS(I -LDTOT(I )MPRTOT( I)MPTTOTII

105 CONTINUE
C

DO 2000 1=1,4

LDTOT(I)=0.0

MPRTOT(I)=O.O
MPTTOT 1)=O.O

1000 CONTINUE
C

RETURN
END

C

C*
C$$HS$$*h:ShASH*IESB$HZ*SEZEBSBS2*32*$R:*$*R**;A$$ ¢€*$

CR

c SUBROUTINE GRNFNC
c*
cU THIS SUBROUTINE CALCULATES THE VALUES OF DEFLECTION, SLOPE,
CS MOMENT AND SHEAR AND ASSOCIATED DERIVATIVES FOR THE GREEN'S

C' FUNCTION, AND RETURNS THESE VALUES TO THE MAIN PROGRAM. TO
Cs INDICATE DERIVATIVES OF PARAMETERS, THE NUMBER 1, 2. OR 3 IS

Ct TACKED ON TO THE END OF THE VARIABLE NAME. HENCE. THE FIRST
Cs DERIATIVE OF L9 NET Po 15 L91

C*

CR
CR¢SRSSRBZB*R*fl*SRSRNBBZSSZ$$$ SBZBRh*BR* S$I$SStR*

C'
C

SUBROUTINE GRNFNC(R,RO,NU,D,GRNMAT)

C

IMPLICIT RHEALt8 (A-H,O-Z)
REAL'S NUGRNMAT(4.6),L3,L31,L32,L33,LS, Lgl,L92.L93

$INCLUDE:'COMMON.FOR'
C

N: 1.0

A:GEOM( ):ADJ(4)

B=GEOM(2)-ADJ(4)
THR O.0
MB 0.0
OB=O.O

C
IF R GT. RO. THEN

RHO= I.O0

ELSE
RRO=O.S

ENDI F
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C
Cs

Cs
CI CALCULATE PLATE CONSTANTS AND PLATE FUNCTIONS, AND THEIR

C: DERIVATIVES

Cs

CS

L3=RO/4.0/A*(((RO/A)**2.0.1.0)*DLOG.,A/RO)*(RO/A)*52.0-1.0)
L31h1.0/4.O/AS*(DLOG(A/RO)Sl 3. 0'ROS'2.0/A512.0-1. 012. 0*
*(H0552.0/A952.0-1.Ofl
L32=1.0/4.0/A*)H.IIRO/A3I2,0tDLOG A/RO)-RO/'A*I2.0-1.0/' RO
L33 1.D0/4. D/AS(6.O/AH2 .0Os:,D LOG(A, HO -I.0 1. 0,A3S2.0-1.0O/RO

L91=L. ,4. 0I - -N) 2 0(. 0-NIG A/LO 1 .O,-NU 3/. Os (UI. 0)-3 RO/A 1* 0N

+*IROSI2. 0'A$*2.0)
L92=-(I.0.NU)/2.0/&/RO-3.01R0511.0-NU)/2.0/A**3.0
L93=( 1.0.SU)/2.0/A/ROISZ. 0-3. 051 .0-NU)/2.0/A*23.0

C
CIM(1.0.NC)/2.0SR/'ASDLOG(A/R>{l1.0-NU)/4.OH(A/B-B/A)
C7=l.0/2.0*I.0-NU*2.0it(A/B-B/A)

r
G3'RO/4.0/RsI(H(O/R'*2.01.0*DLO(HROV.(HO/R)**2.0-.0)HRO
03U2 . 0 4. 0. Rs3. ISRO*52. 0' R52. IDLOO H; HO) .2.0 OOH2.ORS*2. 0.
*D LOG H' HO:-2.0 'RHO
C32-1.O.4,O Rs 6.O*HO R'*2.0*LO R RO'-RO RSSZ.0-I.0,RO'RRO
033 1 0'4.OvHS:6.0. H*52.I*,ILOG RHO.-1.0>iJ.0 R*s2.0-1 ,O'RO*'2. C

GS=RO/4.0,HS;(ROR,**2.0-1.0-2.0SLOGRRO )RRO
G61=1.0'4.0/R*(3.0S.ROtH2.I,Hsl2.0-1.0:2.0DLOG(RRO ,*RO
G62= 3. 0'HO/2.0/R*53.0-1 .0/2.0'HO/H:SHRO
063= (3. 0i2. 0/B*3. 01. 0/2.0,5, H0552.0, 'RO

C
G9=RO/RI(I.0.ONU) /2. O*DLOG(R/9) (I0 -NU) A. 0S(1.-0-(RO /R) **2.0;
* RHO
091=I.0/4.0/HI(2'.0III.0.nu~s DLOG(H,HO)-1.0).)1.0-NU)-3.0*
* ILO-NU)IROS*2.0/H152.0,HHHO
GSZ=-1I. 0/4 .0/R* f2.01) l. 0-NL)/RO-R.0*HO Rs'2.OS I .0-NU))HHHO
G93=1.0/4.D/RI)2.0*) 1 0NU)/R0152 0-6.OiR**2.0S( 1.0-HUJSHRO

C
F1IKI.0 NU12 2.0*8R*HD~oHI.0G BI 0- 4('4 .0* H H-HH)
F2=1.0 4.0' 1.I-9 R H S2.IS,..0.2.0tI.OC H
F3-s 4.0R* B I **S2.0-1.0S*DLOG R H - 9 R *-2.0-1.0

14'l0'2.*.II-HtSR- I.0-NI>S&HB
F5=1.0'2.0'.- BHR5s2.0
F6'H'4.0 HS' S H ''2' 0-I.I-2.08DLOr H B
F7'2.0,2.O*1.-0-Nlss:.O0 iR P-HR
18')1 0,2. 0* 1, 0 -NI .. 1.1- N * 0 H Ss5 0
F9'H H', i .0-NI -'.0*IuOGH H B* .1.0- 1 4.0- 1.0- H R *.
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C
CS

C: CALCULATE THE DEFLECTION, SLOPE, MOMENT AND SHEAR, AND
C* ASSOCIATED DERIVATIVES, AND STORE IN THE MATRIX GRNMAT.
Cs THIS MATRIX IS A 4 BY 4 MATRIX, WHERE ROW POSITIONS ARE AS
Ca FOLLOWS
C*

Cs I DEFLECTION
C* 2 SLOPE
C* 3 MOMENT
Cs 4 SHEAR
C*
Cs AND COLUMN POSITZONS ARE AS FOLLOWS
C *
CS I GREEN'S FUNCTION (NO DERIVATIVES)
CS 2 1ST DERIVATIVE OF GREEN'S FUNCTION WHT HO
CS 3 2ND DERIVATIVE OF GREEN'S FUNCTION WRT HO
CS 4 3RD DERIVATIVE OF GREEN'S FUNCTION WRT NO
CS
C9 FOR EXAMPLE, THE VALUE RETURNED BY GRNMAT)2,3) REPRESENTS
Cs THE SECOND DERIVATIVE OF THE SLOPE FOH THE GREEN'S FUNCTION
CS WRT HO
CS

CS

C
YB'-WsASS3.0'DS Cl*L9,C7-L3)
THB=WASS2. liD C7SL9
GHNMAT~l,i =-(YBTHRXNFI-WSRS*3SISDlG3

GRNMAT)2,l)=THB*F4-W*R420DSG6
CPNMAT(3,1)=THB*S/R*F7-W*RSG9

GRNMATA4, I WSRO,R*RRO
C
C

V81=-WSASS3.0,'D*IClSL91/C7-L31l
THBIzW*ASS2. S/D/C7*L91
GRNMAT(1,2)'-CYBIhTHBIRsF-WSR**3.0/DRG31)
GRNMAT(2,2)=THElSF4-W*R~s2. I/D*G61
GRNMATf3,2) 'THl*DRSF7-W*RSG91
GRNMAT(4,2,=W/R*RRO

C
C

YH2=-W*ASS3.0,D*,CI/C7*L92-L32
THB'zNsA**2. 0, C75L92
IRNMATL13'- YB2-NSVFISTRHB W-NSS.. D*G.32.
GRNMAT,3 =F4STH2-WsR-.2.O 55062
GRNMAT,3.3.'D*F7 R*THR2- %N.G9)'

GRNMAT,4,3 zS
C
C

Y83 -WxA-S2.0 Ds2 C! C7*93-L33
TNE3'WSA*S2.0 D C7L9.

GRNMAT~ 1,4 --Yb3-RS~l9TVV3 -WsF-.2l.O 550,3



GRNMAT(2,4)=F4BTEB3-W*R*2.0/DSG63

GRNMAT(3,4 =D*F7/R*THB3-W$RtG93
GRNMAT(4,4)=O

RETCRN

IND

C
Cs

CA
C* SUBROUTINE GAUSS

C*
C THIS SUBROUTINE USES GAUSS ELIMINATION TO DETERMINE THE

Cs UNKNOWN BOUNDARY CONDITIONS. THE MATRICES A AND B OF THE

Cs EQUATION AX=B ARE PROVIDED BY THE SUBROUTINE AMATR. THIS
C$ SUBROUTINE THEN RETURNS THE MATRIX X OF UNKNOWN BOUNDARY
Ca CONDITIONS. THIS SUBROUTINE WAS TAKEN FROM THE BOOK

Cs "NUMERICAL ANALYSIS" BY L.W. JOHNSON AND R.D. RIESS.

C*

Cs
C

SUBROUTINE GAUSSB,A,XI

C
IMPLICIT REALA8 A-R,O-Z
CRARACTER*22 BCLEL,8)

REALA8 A4,4),H(4),X(4;,BCMAT(8),BCt4

DIMENSION AUG,50,51
INTEGER POS(8 ,BCPOS'8',M,N

C
NM1 73
NP=5
N-4

C
C SET UP THE AUGMENTED MATRIX FOR AX=B

C

DO 2 II.N
DO I J=I,N

AUG'I,J) AI,J)
CONTINL'F

AUG I,NP :B I

2 CONTINUE
C

U THE OLTER LOOP USFS ELEMENTARY ROW OPFFATIONS TO TRANSFO?

7 THE AUGMENTED MATRIX TO ECHELON FOR

119



C
DO 8 1 INx1

C SEARCH FOR THE LARGEST ENTRY IN COLUMN 1. ROWS I THROUGH N
C IPIVOT IS THE Row INDEX OF THE LARGEST ENTRY
C

PIVOT=O. 0
Do 3 .IIN
TEMP=ABS(AUGJ,I':
IF4PIVOT GE.TEMP GO TO 3
PIVOT=TEMP
IPIVOT=J

3 CONTINUE
IF:PIVOr.RQ.0.OS GO To 13
IV~IPIVOTE.QI, GO TO 5

C
C INTERCHANGE ROW I AND ROW IPIVOT
C

DO 4 E I.NP
TEMP=AUG (I.E
AUG( I, K) AUGJIPIVOT, K)
AUG) IPISOT,K)=T9MP

4 CONTINUE
C
C ZERO ENTRIES (i-1).(x-2, ..... NiJ, IN THE AUGMENTED MATRIX
C
5 lpllI-I

DO 7 E-IPIN
Q -AUG V. I AVG'I, I
AUG K,1 0O.0

SO 6 j IPI,NP
AUG: E,J?=QxAVG( D,i'lAiJO;E.3

6 CONTINUE
7 CONTINUE
H CONTINUE

IVAUG(N.N).EQO.OD GO TO 13
C
C BACISOLVE -O OBTAIN A SOLUTION TO AX=B
C

X(Ni=AUG(N,NP)/A',G N.N)
DO 10 E=1,NMI
Q=O.O

DO 9 J=1,E
Q=Q-AUG (N-K, NP-J)*XD(HP-i

9 CONTINUE
X N-R AUG(N-K,NP -0 At'G:N-r,N-E'

10 CONT I NIE

C CA:CtLAT. THE NORM OF THE RESIDL'Al VECTOR, H-AS.
CSIt7 !ERRzl~ AND RETURN~

RSGQS .0
DO 12li.

DO 11 *1=j,N
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Q'Q.A(1,J'BX(3!

11 CONTINUE

RESI=B(I)-0
RMAG=ABS;RESI
RSQ=RSQRMAGS$2

12 CONTINUE

RNORM=SQRT(RSQG
IERRORzI

C
C ABNORMAL RETURN --- REDUCTION TO ECHELON FORM PRODUCES A ZERO
C ENTRY ON THE DIAGONAL. TRE MATRIX A NAY BE SINGULAR

C
13 IERRORz2

C

RETURN
END

C
CS
C$ SSR**RS*sBNS¢ ss*$$*$$N*$RssS*SSR*;s$$ t$tttss$$$tss¢$$S;;*ts$$$

Ca
C* SUBROUTINE BCM
Cs
Cs THIS SUBROUTINE TAKES THE KNOWN BOUNDARY CONDITIONS STORED
Cs BY THE PROGRAM INPUT IN THE FILE BCM.DAT AS WELL AS THE

Cs "UNKNOWN NOUNDARY CONDITIONS RETURNED BY THE SUBROUTINE GAUSS
Ca AND CREATES THE 8XI MATRIX OF BOLNDARY CONDITIONS BCMAT
C9

C s
C

SUBROUTINE BCMPOSBC,X,BCMAT.
C

IMPLICIT REALt8 (A-RO-Z'C

REAL$H BC(4),X(4),BCMATH)

INTEGER POSCH)
C

K=O
L=O
DO 120 I=1,8

IF (POS I; CT. 0; THEN

BCMAT(I)=X(E,
ELSE

L L I- I
RCMAT I -BC I

END IF

:20 CONTINUE
RETURN
END
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C
C

Ct
CS SUBROUTINE SOLVER

Cs
CS TES SUBROUTINE SOLVES TAKES THE COMPLETE SET OF BOUNDARY

Ca CONDITIONS SUPPLIED BY THE SUBROUTINE EN AND SOLVES THE PLATE

CS BENDING PROBLEM ACROSS THE PLATE WIDTH. IMPORTANT PARAMETERS
CI SUCH AS DEFLECTION, SLOPE ETC ARE STORED IN THE ARRAY ST7
C.

Cs
C

SUER UTINE SOLVER.XMT,BCMAT

C
IMPLICIT REAL*8 A-1,O-Z'

C
REAL* GRNMT14,6 ,GRNMT2 4,6 ,B-MAT V DT 50,4 SM '(,4 N',

PXMT(50),STTAV(50,2,
INTEGER M,N

$INCLUDE:'COMMON.FOR'
C
CS

Cs
Cs REZERO THE MATRICES DT AND ST

Cs

CS
C

DO IO I=1,50
DO 5 J=l,4

ST I,J =O.O
DTI,J-=O.O

CONTINUE
IS CONTINUE

C

A=GROM( I
B=GEOM 2
NLUGEOM 3)
D CEOM( 4

C
C

C
ROzB
DEL A P AS.' 2

N INT Af.)
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C

Cs THIS LOOP CALCULATES THE LOAD TERM AND TEE PLASTC MOMENT

C* TERM FOR EACH EQUATION. REFERS TO TEE RADIAL STATION AND J

Cs REFERS TO THE EQUATION, WHERE THE FIRST EQUATION IS FOR

Cs DEFLECTION. THE SECOND FOR DW DR. THE THIRD FOE D^2W DR-2 AND
Cs THE FOURTH FOR D'JW/DRD3. THE DERIVATIVES ARE THEN USED TO

CS CALCULATE SLOPES, MOMENTS AND SHEARS

CS
CISSa,sssz,...sss2s$ssssssIIssesssJs$SS$SSSS*$**ttSt tt**StIt** *55

C*

DO 155 I-1,N-I

IF (I EQ. I THEN
ROB-ADJ, I

FNDrF

IF I EQ. N-1l, THEN
RO=A-ADJ(I

ENDIF

DO 150 M-1,NINT ADJ,2

RzB-DEL 20-REAL M *DEL
CALL GRNFNC R,RO,NU,D,GRNMTl

STTAV M.I. STT M,9 STTM-..9, 2 0
STTkV M,2 OLSTT'M,.O -STT M- I,10 2 0

DO 140 J7 ,4
DT 1.2 -DT :,..I- XMT M GRNMTI 1,: -R OEL*STTAV'M.

-GRNMTI 3,J D-NI R-CRNMT1 2.2 *R

-DELSSTTA% M.2 *SSNMTI 2.J

140 CONTINUE

150 CONTINUE
IF I .E I THEN

RO-B-DEI

ELSE
RO RO DEL

END1 I
155 CONTINIE

C

C
CS

CS

C* AT EACH INCREMENT OF WIDTH DEL ALONG THE PLATE RADIUS, CALCULATE

Cs THE DEFLE:T:ON. SLOPE. MOMENT AND SHEAR. WHICH ARE STORE," IN
CI ST' EACH CO,. M' REPR SFNTS RC. , TH, 4, Q, ', Ni ... S.U-

Cs PONO:NG T- FACh STAT!2N I kCROSC THE RATIS

C .

DO0 2 00 i 1 , N - 1C

i E. THEN
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RO'2-.ADJ ( I
INDI F
IF (1 .120. (N-1)) THEN

RO=A-ADJf I
END IF

C
R='A
CALL GRNFNC R, RO,NS,D.GRNITI

R'R
CALL GRNFNC(R, RONO, 2,RNMT2
DO 180 J'1I. 4

Do 170 K1-14
SMPI,J =A*RNMTI K,J,SBCMAT X 91-2.0*2-

B*GRNMT2,K,J xBCMAT 22-4 * -IC s*K-S4 1,3
70 CONTINUE

SM I J SM IJ -ST,,J

1120 CONTINLE

C.

C'8 STT( 1,2; - 112II:S OF INTEREST
c's STT(I.- DEFLECTION
C. STT)I.3) - 01,01
CSt OTT. 2.4) RADIAL MOMENT

-9STT:i,5 -SHEAk

csSTT IA: TANGENTIAL MOME~NT
Cc STT( I , 7 - W2- SR'O

r. TT IA - DW3:R-3
STT 1,9 RADIAL PIASTIr MOMi'NT

.8STT 2.10 -TANGENTIAL PLASTIC MOMEN.T

SIT, I. 'A

OTT 2,2 -SM 1,1 'No

STT I.3,'2 0 120* SM S TT;1,2:
STTI1.7,-I. Ro* SM [3 -2 O*STT,1.

OTT 1.12 -1 SRO SM 1,4 -3.OVTT,I,7
OTT 1.4 : --DsSTT I,7.-NS-VRO*STTI,3
OTT 1,5 '08 OTT.I,B -1.0RO*STT'T.7 l.SRO*2.0S

OTT I2.2

SIT I.6 = I) 1.0,RO*STTI1.3.-NUITT'1,7.

* TRIO IS A STEP To PREVENT THE INTEN IOR POINTS FROM
C* HAVING THE EPSILON THROWN IN.

IF I .120 1 TH2EN

120 - B' - I E L

END IF
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Ce

Ct TA !C SPA ROOT 7'P AP.FS THE FLATE HESAlSOLITI ON EON TAP VA PI
Cs LOAD 'NCARENT AND CALCUELATES THE LOAD AD WHICH YIELDING CE TAG
ft OPTER FAD BE R WI L OCOA R. TAG LOAD MA TAI I S THEN NCREAS 1I TO

VtTHIS VA00G. THSIS IS ESSENTIALLY A TIWE S.AVER, TO AVOID STEEPIAC.

C t F TAE LnAV I N THE ELASTIC DAN.Vf

VRO 7AF, l TN 511 AN IMAS ,OWAT

KNAI RA:4kAN:.IMAX.ITMAX

S I: F M f -E

s: S HA" hT VI I AVACIC TAE PLATE. *AEDE TAD HENS I NG M0OAF STS

VS lEp'IAA XES

V 4A %

, AINT 11, ADA J
IF ABS DUD 1 A CT. STAMAN TADS

ADARA-RAS TT 1,4

!A
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KUZ2

IMAX=ITMAX

ENDIF

122 CONTINUE
C

CS
Cs CALCULATE THE EQUIVALENT STRESS AT THE LOCATION WHERE STRESSES

Cs ARE RICHEST. COMPARE IT TO THE YIELD STRESS. THEN RATIO LP THE
C9 LOAD MATRIX ACCORDINGLY
CS

U
ERMAX=STTIIMAX,7 sGEOM5 '2.0
ETMAX=STT'IMAX,3'*GEOM S'2.0,STT XMAX.
SRNAX=GEOM 6 GEOM'7. I.-GEOM 3 '.2.O s ERMAXGEOM 3 SETM4A

STMAX=GEOM'6 GEOM 7 ' 1,-GEOM 3 's' 0 1 ETMAX-CEOM 3 'FEMAX

SEMAX'SQRT SRMAXES2.I-SRMAXSSTMAD-STMAX'A2.S
R=GEOMW6';SEMAX
DO 126 J3I.NINT'ADJ2

LDMATI J =RLDMATI;J

126 CONTINUE
WRITE( ,130) LDMATI l

130 FORMAT(2XD 'LDMATI z ',F20.!O
C

RETURN
END

C
CS

C$s

Cs SUBROUTINE PLAST
C'

Cs THIS SUBROUTINE CALCULATES PLASTIC MOMENTS USING A TRAPAZOIDAL

Cs RULE INTEGRATION SCHEME. THE SUBROUTINE WILL ONLY HANDLE

C' LINEAR ELASTIC-PERFECTLY PLASTIC MATERIALS.

CS

C's
C

SUBROUTINE PLAST I
C

XMPLIC:1 NEALS8 AR-? C

REALSA MRBMIP.NL
INTEGER IZ

I!NClIDE 'COMMCN.FOR'
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C
C

Cs
Cs VARIABLES USED IN THIS SECTION ARE DEFINED AS FOLLOWS

Cs
C* DER - TOTAL RADIAL STRAIN INCREMENT
Cs DET - TOTAL TANGENTIAL STRAIN INCREMENT

Cs DERE - ELASTIC RADIAL STRAIN INCREMENT
C* DETE - ELASTIC TANGENTIAL STRAIN INCREMENT
Cx DEL - DEPTH INCREMENT

C* I - RADIAL POSITION STATION NUMNER
C* IZ - HALF-THICKNESS STATION NUMBER
C DSI - RADIAL STRESS INCREMENT
CS DS2 - TANGENTIAL STRESS INCREMENT
cs STRT - MATRIX HOLDING THE TEMPORARY STRESSES AT THE

Ca GIVEN LOADING INCREMENT I=EADIAL.2=TANGENTIAL,
Cs SET - TEMPORARY EQUIVALENT STRESS - USED FOR YIELD

C* CRITERIA
C* SE - EQUIVALRNT STRESS FROM PREVIOUS INCREMENT
Cs DEPT - ARRAY CONTAINING THE TEMPORARY STRAIN INCREMENTS
CS AT THR GIVEN LOADING INCREMENT (1=RADIAL;2=

C* TANGENTIAL
Cs N - CONSTANT REFERRING TO THE FRACTION BEYOND YIELDING
Cs THAT OCCURRED DURING THE COURSE OF THE LAST LOAD

CS INCREMENT
CS Z - DEPTH
CS

CS
C

STT I,9, .O
STTI,10 =O 0
SSUMR-O.I

SSUMT'O O
DEL=GEOM 5 2.0'/ADJ 6)-I.
2=0

ERGEOM(B)/GEOM(7)
NUGEOM3

C
DO 500 IZ=NINT ADJ(61',I.-1

C
Cv

CS
Cs THIS SECTION CALCULATES THE STRAIN AND STRESS INCREMENTS

C* CORRESPONDING TO THE GIVEN LOAD INCREMENT. IT THEN ADDS THE
C* STRESS INCREMENT TO THE PREVIOUS TOTAL STRESS TC CALCULATE THE
I* EQLISALENT STRESS. TRE EQUIVALENT STRESS IS COMPARED TO TH

Cs UNIAXIAL YIELD STRESS TO SEF If YIELDING HAS OCCURRED. IF SO.

CU THE PLASTIC STRAIN INCREMENT IS SET EQCAL TO THE TGTAI STRA:N
-T IkCREMENT
C2

-S
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C

DER7-STT::.T3 !2-I'ISEL
DET=-STTI1,3 S I2-1SXDEL ST1,S
DERE=DER-DEPT 1, 12.1.
DETR=DET-DEPT. 1,12,2
DSI=E/(S.0-NUtH2.0t*DERE-HC*DETE
DS2=E/1.-NS2.0IlRDTEN'*DERE
STRT:I,I2,l:=STR. I,12,1flSIl
STRT'I,IZ.2 -STR I,I2,2-052
SET(1,I2=SQRTS'TRT.I.12.S :*2.S-STRT.I,12,iSxSTRT 1.I2,2

- -STRT I,12,2)v'2.
C
Cs
Cs SEE IF YIELD CRITERIA IS EXCEEDED. IF SO, HEZERO THE PLIASTIC
Cs STRAIN INCREMENTS AND THE STRESS INCREMENTS ALSO, RETURN TO THE
C* MAIN PROGRAM IF THE OUTER FIBER HAS NOT REGiN TO YIELD
Cs
C

IF SET 1,12; LT. GECM 61' THEN
DEFT; I, 12, U=O.0
SEPT' I,2=0.0
STT( I. 9' 0.0
STT( 1.10 0D.D
IF (IZ EQ. HINT; ADJSY }) TREN

RE TU;RN
END IF

ELSE
SET;II 1,7'GEOM A,
DEPT 1,121 SDER
DEPT 1,IZ.2 -DET
IF iSE 1,12 .LT. GEOM 6i, TEEN

H';SET 1.12 -GEOM 6 -. SET;1,12 -SE51,12
SEPT1.21;SET11.
SEPT; I. 1,2 -R*SEPT,12I,2
STT1, STR . ,71-52.IH
STHTI.12,2 =5TH 1,12,2 *5S22,1-Rl

ENS IF
ENS IF

C
2= 2*DEL

C
S00 CONTINUE

C s

C* PERFORM A THAPAZO1DAL RULE INTEGRATION OF THE STRAIN CLEkh

CS PLATE HALF TRUEKNESS. AND MULTIPLS RNY" T, GIVE THE TOTAL HAl NI
C* AND TANGENTIAL PLAS71C MOMENT INCE.EMENCSz ST ;.9 AND S771.

Cs

2--DEL 2.0
DO S4C I,>1.NST- AU 6 -1
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Z=Z.DKL
DMPR(DEPT~lIZ.,-DEPT(I,IZ,,1l-GEOM:3.*ORPT I.lZ,2,

;0plBPT',IZ,,1,2: s;Z,2.0
D.PT, DBT1. Z,2 DEET I ,IZ-1,2,))-GEOM 3s* DEPT,I,1,

-DEPThI. IZ-1S.Ij *2/2.0
SSSMR SSUMR*OMPR
SSUM'I=SSUMT.DMPT

540 CONTINUE

STT: I.9; 2.O0EOM'6),EOM7)/l-GEOMf3 252.0 *DEL*SSUMN
STT1,10O2.0*GEOM(6 GEOM7)/(lBM3)52.0,5SELSSCM7

WRITE's.600D I
60D FORMAT 2X, LAT P05 '.12

WRITE{'*,700 STT1,9 STT 1,10
700 FORMAT'20, 'MRP z '.20.12,' MTP 'F20. 12

C
RETURN
END

C
CS

C* SUBROUTINE UPDATE
Cs*

7* TIS UBRU7D.A TASSTEDINCREMENTAL STRESSES, STRAINS,
Cs DEFLECTIONS. MOMENTS, ETC AND ADDS THEM TO TRE PREVIOUS TOTALS
Cs ONCE CONVERGENCE OF PLASTIC MOMENTS HAS OCCURRED.
Cs

c*s***s**s*s**ss*s*~~sss~~* ~~~~~*s5s
Cs

SUBROUJTINE UPDATE(STTI,DMAS,OUT,LDMATI.LL.LDMATO,
C

IMPLICDT REAL*8 iA-RO-Z-
REALER STTlU50,2l,LDMATO50SLDMAT(5,.NUi,EEL,E
INTEGER NN.OUT,LL

SINCLUDE. 'COMMON.FOR'
C

NN-NINT ADJ 2 -1
EzGEOM 6. GEOM 7
DFL-GFOM 5 2 0 ASJ 6 0

DO 1000, Vi.NN
DO 955 J LL, IS

ST 1,J ST IJ .STT I.J
ST CONT:NIE.
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LXMATO( I, LDMATIAS *IDMATO, I
C

00 980 IZ=I.NINT ADJ 6

Cs
Cs IF THE YIELD CRITERIA HAS BEEN EXCEEDED, THEN ADD IN THE
Cs PLASTIC STRAIN INCREMENTS AND UPDATE THE TOTAL. STRESS TC'
C- EQUAL THE TEMPORARY STRESS CALCULATED IN THE SUCENCITINE
C s PLAST
C 3
C

IF S l..GT. GEOMND. THEN
8P' IIZ.1 =EP ISZ,1'*DEP7 I, IZ.!
EP I.IZ'Z'EP I'l'Z'? -D&PT !'IZ'Z
STE I,IZ,X'zSTRT,12I.1
STR; 1I, 22 STRT'5,l17,2
ZOEGOM5)'2.0'IADJ,6 -1.0D 512-:

ELSE
C
Cs
Cs IF THE YIELD CRITERIA HAS NOT BEEN EXCEEDED. THEN UPDATE THE
CS STRESSES AND EQUIVALENT STRESSES USING THE ELASTIC EQUATIONS
Cs
C

STR'S,IZ,I) -E'i(l.D-NU:*.D,*,ST I'7s IC-1iSSES
- EP(II, -NU* ST:I,3 a IZ-SSSEL.ST ,1~

STR;IZ,2~-':S.D-~ss2. zRST ,.1-S *VEL STI
-EP I.IZ,2; NUS:ST1,7;sIZ-IsSREL

SEll. lZ SQET STR ,1,.*2 -T .I..
*STR I,IZ.2,-STR.I,SZ.2 *92
ENDS U
IF ABSDEP,17I.1,- GT. GEOM,9. OR. ADS EPSI.SZ.2-

G T. GEOM 9 THEN
OUTm S

ENDS P
980 CONTINUE
1000 CONTINUE

C
LL= 2
RETURN
END
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C
Cs

Cs
CE SUBROUTINE RESUL
C*
CE STORE THE RESULTS AT THE END Of EVERY 10 LOAD INCREMENTS IN
C* THE FILE OUT.DAT. ALSO SCREEN DUMP THESE RESULTS.
Cs

C s
C

SUBROUTINE RESUL(MM,STT1.COUNTLDMATO)
C

IMPLICIT REAL*H (A-H,O-Z)
HEALER STTI)50.2),LDMATO(50)
INTEGER NH

SINCLUDE: 'COMMON.FOR'
C

NN=NINT(ADJ(2) (.1
DEL=)OEOM)1)-GEOM(2))/ADJ(2)

IF (COUNT .EQ. 1.0) THEN
WRITE) 15, 100)

100 R* 20

WHITE) 15. 120) MM, LDVIATO(1),'DEL
WRITEC" 120) MM,LDMATO)1)/DEL

120 FORMAT)21.'LOAD INCHR ',13,' LOAD ',1,0.4./)

WHITE) 15, 130)
WHITE)', 130)

130 FORMAT(2X. 'HADPOS'.21, 'DEFLECT '.21. 'SLOPE '.20, 'HAD MOM
+.21,' MHP ',21, * TAN MOM * .2X,' MTP ' ,' SHEAR
DO 160 1=1.NN

STMhzST)I )ST)I 9)
STM2=ST) 1.:6)+ST)( 1,10)
WHITE)15,140) ST)1.I),-ST)1.2),ST) I.3).STM1,ST) 1.9).

+STM2,ST) 1,10) .ST) 1.5)
NRITH)H. 140) ST)1, 1) -ST)I.2) .ST)I.3) .STM1.SI( 1.9).

+ STM2. ST I, 10) .ST 1, 5)
140 FORMAT)2X F5.2 22X F7.5,2X.F7.4,21. FlO.0,2X,F5.0,2XFIO. 0.

2X.F5.0G.2XFilO)
160 CONTINUE

C
WHITE) 15, 163)

W RITE) H, 163)
163 FORMAT) 2 .2 . .. .. ... .. .. ... .. .. ... .. .. ... .. ..

IF )ST)I 9) NE. 0.0 OH. ST)I.10) NE. 0.0) THEN
WHITE)15,. 170) ST)0.1)
WRITE)2.170) ST)IIl)

170 FOHMAT)/,2X, 'RADIAL POSITION z' . F.2)
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WRITE) 15, 165)
WRITECS, 165) RPSA

165 FORMAT(/,2X. ' DEPTH 12, X E 5 .A
21.' ST ,2X,'SLN '2,' SE .1

Do 200 IZ=1,NINT(ADJ(6))
IF (SE(I.IZ) .13T. GRaM(6)) THEN

WRITE(15,180) Z,EP(I,IZ, i).STN(t. 
Z12. 1LP(1. 12,2),

ST(1 12) , 2) ,SE(1, 12

WRITE(', 180) 2.EP(1,IZ,I),STR(I. Iz,1)E),Z

sTN)1. IZ. 2) . 5(1. 12)

IS0 FORMAT)2X,F6.4.3,F1a10 ,B~XI.8,30,V81.al

END IF

200 CONTINUIE
END II

1000 CONTINUE
END IF
RETURN
END

COM~MON /pLSCM/ Ep'50 ,50,2),STT50) 
ETt,02,T(O

AD STO:9SPRT(50,5O.
2
),.SET(5O,5Ol

RZAL:E58 50 AD S. STT, DEPT,STR,S9, STRT.SET
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